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Abstract: Seismic-data interpretation has as it’s main goal the 

identification of compartments, faults, fault sealing, and trapping 

mechanism that hold hydrocarbons; it additionally tries to 

understand the depositional history of the environment to describe 

the relationship between seismic data and a priori geological 

information. Finding hydrocarbons through salt detection has 

been an intricate process, ever since they images salt the first time. 

Salt bodies form oil traps, which form potential reserves for 

hydrocarbons. This forms the basis for the motivation behind 

hydrocarbon sensing via salt detection. Seismic data interpreters 

are used to interpreting on 2D or 3D images that have been heavily 

processed. In our problem statement we our dealing with data that 

is less noisy which is an added advantage. Our solution to the 

problem is to basically use U-Net. The energy function is computed 

by a pixel-wise soft-max over the final feature map combined with 

the cross entropy loss function.  

 

Keywords: U-Nets, CNN, hydrocarbon exploration, salt body 

identification.  

1. Introduction 

Acquisition technology advances and exploration of complex 

areas are pushing the amount of data to be analysed into the “big 

data” category. Current exploration workflows consist of many 

partially automated steps in which domain experts (geologists, 

geophysicists, rock physicists, etc.) command highly tuned 

applications and then curate the resulting data in search of 

valuable information. The data explosion is stressing these 

workflows to a point at which every year more of the data 

remains unused. The exploration process can be split up into 

two elements i.e. advanced tools and manpower. Tools have 

progressed, and the addition of high-performance computing 

has helped to reduce turnaround times for seismic imaging [1]. 

Even in the extreme case in which execution time for processing 

tools would take nearly zero time, the problem of manpower 

remains; there is no sensible way in which domain experts can 

analyse and interpret all incoming data. The best solution must 

trade domain-expert time for computing time. Therefore, some 

of that domain knowledge needs to be formalized and 

implemented within existing and future tools. One way to 

achieve this is by taking advantage of algorithms that learn, for 

instance, from legacy data that have been properly vetted. Using 

machine learning, we can take advantage of new algorithms and 

software ecosystems, as well as specialized hardware. In this  

 

contribution, we will focus our attention on one such 

application of machine learning. Seismic imaging is the primary 

tool used to build high-resolution models of the subsurface. In 

practice, it is typically part of an iterative workflow that 

alternates between imaging steps and model update steps. The 

above refinement is expensive when talking about human costs 

and computational costs. Most prior work focused on 

identifying features in already migrated image [2] [3]. The 

literature is filled with refinements to this workflow, but 

ultimately, it remains largely the same. 

2. Related work 

A. Supervised learning to detect salt body 

The primary aim of Seismic-data interpretation is to identify 

compartments, faults, fault sealing, and trapping mechanism 

that hold hydrocarbons, it also tries to understand the 

depositional history of the environment to describe the 

relationship between seismic data and a priori geological 

information. Data mining or knowledge discovery in databases 

(KDD) has become a significant area both in academia and 

industry. Data mining is the process of extracting novel, useful 

and understandable patterns from a large collection of data. 

In order to strengthen the data interpretation data mining 

strategies (Hastie, 2011) are employed to classify points or parts 

of the 3D seismic data. Multiple studies have shown the benefits 

of using data mining techniques for seismic-data interpretation. 

Global optimization methods (Shi et. al., 2000; Hale et. al., 

2003) are best used to segment a seismic image into structural 

and stratigraphic geologic units (Hale, 2002). The application 

of Self Organizing Maps (Castro de Matos et. al., 2007) is 

another solution that uses unsupervised learning techniques. 

The authors’ new approach is essentially a novel salt body 

detection workflow. The goal is to create a software solution 

that can automatically identify, classify and delineate salt 

bodies from seismic data using seismic attributes and 

supervised learning algorithms. 

1) Automated classification of salt bodies using machine 

learning 

The approach aims at automatically identifying and 

delineating geological elements from seismic data. Specifically, 

the authors have focused on the automatic classification of salt 
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bodies using supervised learning techniques. In supervised 

learning we assume each element of study is represented as an 

n-component vector-valued random variable (X1, X2,.., Xn ), 

where each Xi represents an attribute or feature; the space of all 

possible feature vectors is called the input space X. We also 

consider a set {w1, w2,...,wk} corresponding to the possible 

classes; this forms the output space W. A classifier or learning 

algorithm typically receives as input a set of training examples 

from a source domain, T = {(xi, wi)}, where x = (x1 , x2 ,…,xn 

) is a vector in the input space, and w is a value in the (discrete) 

output space. 

They assume the training or source sample T consists of 

independently and identically distributed (i.i.d.) examples 

obtained according to a fixed but unknown joint probability 

distribution, P(x,w), in the input-output space. The outcome of 

the classifier is a hypothesis or function f(x) mapping the input 

space to the output space, f: X → W. We commonly choose the 

hypothesis that minimizes the expected value of a loss function 

(e.g., zero-one loss). 

 

 
Fig. 1.  (a) Seismic Data (b)Classified Image (c)Results after post-

processing step 

 

2) Informative attributes to generate predictive models in 

seismic data 

A proper characterization of voxels can be attained with 

useful and informative features. We selected three features for 

our study exhibiting high correlation with the target class: 

signal amplitude (directly from seismic data), second 

derivative, and curve length; the last two derived from 

amplitude. The second derivative is instrumental in the 

detection of edges, and curve length capture patterns within 

images, which characterize different features observed inside a 

salt structure and in its surroundings. 

3) Supervised learning algorithms 

The authors' data analysis phase receives a body of seismic 

data as input, with the task of automatically identifying salt 

regions within the image. To achieve a class-balanced problem, 

they have made sure exactly fifty percent of the subset 

corresponded to salt, and the rest as non-salt (the task exhibited 

equal class priors). The authors' model was built using 2 million 

training voxels. Accuracy is estimated using 10-fold cross 

validation (Hastie, 2011). This classification model was further 

used to generate labels for the entire body of seismic data 

(376,752,501 voxels). 

The authors report that Gradient Boosting Trees (Accuracy 

80%), Extremely Randomized Trees (Accuracy 80%), and 

Random Forests (Accuracy 79%) were the top performing 

learning algorithms. All of their learning algorithms are 

ensemble methods; these techniques have shown remarkable 

performance due to their facility to procure low bias (using 

complex decision boundaries), and low variance (achieved by 

averaging over various models). 

SEAM I (SEG Advance Modeling Corporation) data, this 

comes from marine acquisition and represents strong challenges 

to the geophysical community. The migrated seismic volume 

was obtained with very low frequency, and there are sediments 

locations with homogeneous amplitude value than salt body. 

Our final predictive model of choice was Extremely 

Randomized Trees, which was used to predict the labels of 

376,752,501 samples; this resulted in a Boolean mask. The 

accuracy they reported is almost the same as in the case of cross 

validation i.e. 80%. After that, we have removed outliers and 

misclassification using mathematical morphological operations 

and a 3D interactive guided (manual intervention) tool 

developed in house; finally, we used threshold segmentation 

using local average threshold to get better detection results. 

 

 
Fig. 2.  Overlapping between seismic data and salt body detected 

 

To measure accuracy, the authors' count the number of 

matches between the detected salt body and the interpretation 

by using both volumes, they have counted the number of hits 

voxel by voxel. We refer to this number as NH. The 

effectiveness ratio is calculated as: (NH/TS) * 100, where TS is 

the total number of voxels in the volume. Following this 

technique, they obtained an accuracy of 95.22%. Machine 

learning algorithms show highly accurate results, such results 

are used to predict class labels of voxels on a seismic cube. 

After the first step, where prediction algorithms are applied 

directly to the data, the authors had obtained accuracy values of 

around 80%. They have employed a follow up (post-

processing) step that increased the accuracy to around 95%. 

They finally conclude that when the selected model has high 

capacity machine learning is a promising mechanism to identify 

geological bodies on seismic data, and by model averaging it is 

able to control the variance component of error (using ensemble 

techniques). 
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Fig. 3.  Overlapping between seismic data (a) salt body data (b) 

interpretation 

B. Automated Fault Detection Without Seismic Processing 

Recent work [4] demonstrates a new approach that builds and 

uses a deep neural network (DNN) statistical model to 

transform raw-input seismic data directly to the final mapping 

of faults in 2D. The authors here haven chosen fault locations 

as the output due to their relevance in optimizing production in 

existing fields. DNNs are built on the premise that they can be 

used to replicate any function. This paper shows that DNNs can 

be used to identify fault structure in 3D volumes with 

reasonable accuracy.  

The first step in Reference 5's workflow (Figure 4) is to 

collect the training examples. Real data examples are 

impractical and limiting since the labels are assigned to fault 

locations by few domain experts. This means that the neural 

network’s best result would be bound by human performance 

and data quality. Instead, the idea here is to generate realistic 

3D velocity models synthetically, with the fault labeling 

generated concurrently for an unbiased ground truth. Next, they 

use an acoustic approximation to the wave equation to generate 

wave fields and record them as time-series signals with 

predefined acquisition geometry. This step is conducted on 

thousands of random velocity-model realizations, giving many 

instances of labeled fault locations and the corresponding 

seismic traces for the entire data set. A portion of this data set 

is kept unseen from the algorithm (holdout set) so that it can be 

used for testing after training the predictor. Ranges have been 

set on a relatively small number of parameters as bounds on the 

random model generator. These parameters include the number 

of layers in a model, the number of faults, the range of velocity, 

and the dip and strike angles for each possible fault. It is 

believed by the authors that the randomized models produced 

in this manner are realistic enough to demonstrate the efficacy 

of neural network predictions (Figure 4). 

 

 
Fig. 4.  Depiction of the workflow’s main tasks 

Since the positions of the faults are known a priori, the 

labelling process is straightforward. However, complexity is 

added to this process when the labelling targets a subsampled 

grid for computational efficiency. Labelling of the coarse grid 

requires an additional threshold parameter. This threshold value 

sets how many fine-sampled voxels inside a coarse voxel must 

be fault-labelled for that coarse voxel to be considered as having 

a fault or not. The threshold is chosen on a trial-and-error basis 

prior to any training. Raw seismic data is far too unrefined and 

redundant to be immediately useful as inputs to this neural 

network. The prediction performance is improved by extracting 

input features carefully, taking advantage of techniques from 

signal processing. The amount of collected features is large and 

grows by orders of magnitude when more realistic models are 

used. 

The authors have generated thousands of random velocity 

models with up to four faults in them, of varying strike, dip 

angle, and position. Their models had between three and six 

layers each, with velocities varying from 2000 to 4000 [m/s], 

with layer velocity increasing with depth. These models were 

140 × 180 × 180 grid points at the sampling used for wave 

propagation (using the acquisition geometry described earlier) 

but were subsampled to 20 × 20 × 20 and 32 × 32 × 32 for 

labelling purposes. The raw data collected was reduced 

aggressively to a feature set capable of fitting an NVIDIA K80 

GPGPU memory.  

With the generated features and labels, a variety of fully 

connected deep neural networks are trained. The network 

architecture main parameters varied from two to 20 hidden 

layers and 256 to 2048 units per layer. For all cases presented 

in Table 1, they used the Wasserstein loss function for training. 

The output of the networks is a subsampled 3D voxel grid, with 

each voxel’s value indicating the likelihood of a fault being 

present within the voxel. Each of the voxel was binary valued 

indicating the presence of a fault. The final predictions were 

generated by taking the likelihood values map output and 

applying a threshold to it, such that likelihood values above the 

threshold would be considered having a fault, while those 

below would not. As a result, a lower threshold can label a lot 

of voxels as faults, whereas a high threshold labels less. Here 

two different quantitative metrics of performance are used: 

intersection over union (IoU) and area under the ROC curve 

(AUC).  

 

 
Fig. 5.  Comparison of (a) the Wasserstein- and (b) non-Wasserstein-based 

predictions, IoU metric (described in the article). Red areas show false 

positives, green shows true positives (correct predictions), and yellow shows 

false negative. (c) 2D slice of a 3D model. The predictions have very different 

IoU, where green means better. 
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Fig. 6.  ROC curves for representative DNN architectures. The closer to 

the top-left corner the better 

 

The IoU value is a ratio of the number of voxels that are in 

the intersection of the ground truth and prediction, divided by 

the number of voxels in the union of the ground truth and 

prediction. This gives us an idea of how clustered or scattered a 

prediction is; the values range from 0 to 1, where higher values 

are better (Figure 5). Two predictions could theoretically have 

the same AUC value (Table 1) but different IoU values. The 

(IoU) value averaged for the entire test set of predictions, with 

predicted likelihoods thresholded at a value chosen to maximize 

the average IoU over all the predictions. 

Each point of a receiver operating characteristics (ROC) 

curve (Figure 6) is based on the number of true positive 

predictions (vertical axis) and the false positive predictions 

(horizontal axis) for a particular threshold value. The AUC for 

the predictions, which describes how strong our predictor is. 

The value ranges from 0.5 to 1.0, where the higher the value the 

better. 

 

 
Fig. 7.  Example of 3D model with two 2D highlighted slices. In this top 

view, two faults can be identified 

 

In Table 1, for all data sets (one, two, and four faults in 

model) AUC exceeds 0.9, which approaches that needed for 

practical use. Also, IoU surpasses 0.3 for many experiments, 

which implies that the prediction can be improved in terms of 

spatial alignment with respect to the ground truth. The 

prediction grid size of experiments in Fig. 9 is 32 × 32 × 32, 

therefore each prediction represents a voxel of 4 × 5 × 5 in the 

model space.  

The predictions in Figure 8 follow the expected results, plus 

some false positives in the bottom-right area of the back slice. 

However, false positives are present in the area where the faults 

coincide. This is in line with expectations, since a cornucopia 

of signals and patterns are produced in that area. This case 

exposes the current limit of the author's predicting resolution 

for complex cases. In general, the resolution is limited by the 

quality of the data. 

To evaluate practical usability, the authors' must address how 

this approach can be scaled to authentic engenderment-level 

seismic data sets. Current synthetic input data is predicated on 

fine-tuned acquisition geometry. If we use this fixed geometry 

to train a predictor, one must bin and stack the acquired data so 

that it matches the acquisition used for training the model. For 

this reason, we believe that using a fixed dense geometry 

permits us to accurately bin and stack real data to match the 

predictor’s input parameters. Denser acquisition means more 

features, and as a result, more dramatic reduction of the feature 

space (and/or more complex neural networks) is needed. 

 

 
Fig. 8.  (a) Expected predictions for fault network in Figure 7 velocity 

model slices. (b) Author’s DDN-based predictions. 

 

The authors report that another area where it can improve the 

prediction quality is by increasing the count of voxels in down 

sampled output grid such that we have higher resolution in our 

predictions. This increase in voxel coarseness means a more 

computationally demanding neural network and thus an 

Table 1 

Results obtained on several representative sets of simulated test data. The 

first two columns report performance metrics; the other columns describe the 

parameter of the experiments. All results obtained using Wasserstein loss 

function, with 16,000 training models and 4000 testing models. 

AUC IoU Hidden 

Layers 

Nodes per 

Layer 

Faults per 

Model 

0.902 0.311 5 768 4 

0.893 0.294 5 640 4 

0.836 0.220 7 640 4 

0.833 0.218 8 512 4 

0.854 0.246 7 512 2 

0.849 0.227 6 512 2 

0.820 0.219 6 512 2 

0.718 0.130 4 1024 1 

0.897 0.395 4 512 1 

0.919 0.384 4 256 1 
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increase in the cost of tuning and training. 

This workflow is flexible with respect to what can be 

predicted. The workflow can be repurposed to build one that 

predicts, for instance, salt bodies instead of fault locations. It is 

easy to change the labelling scheme so that salt bodies are 

labelled before training. Since salt bodies often create strong 

signals it can be expected that this geologic feature could also 

be identified using this method. Preliminary results along this 

line are promising. 

C. Automatic salt-body classification using deep-

convolutional neural network 

Here the salt body classification is treated as a semantic 

image segmentation problem with binary classes: the algorithm 

assigns a salt label to each image pixel based on the shape of 

the seismic image. While multiple seismic attributes can avail 

the salt body detection, for simplicity, they only utilize seismic 

amplitude as the input in our automated method. The network 

has the ability to delineate objects supported their form despite 

their tiny size. Compared to previous network architectures, this 

encoder-decoder architecture can be trained end-to-end in order 

to jointly optimize all the model parameters in the network. The 

key component of our proposed network is the decoder network 

which consists of a hierarchy of decoders corresponding to each 

encoder. The original Segnet reuses the max-pooling indices 

received from the encoders to perform non-linear up sampling 

of decoder feature maps, but this type of up sampling is prone 

to checkerboard artifacts (Odena et al., 2016). While these 

artifacts are acceptable in mundane scale natural images, the 

issue becomes paramount in seismic images which contain 

diminutive scale features such as reflection signals, faults and 

minute discontinuities. To overcome this issue, we adopt the 

resize convolution proposed by Odena et al. (2016) in our 

implementation. Each encoder in the encoder network performs 

convolution with a filter bank to engender a set of feature maps. 

These are then regularized by batch normalization (Ioffe and 

Szegedy,2015). Element-wise rectified-linear unit (σ(x) = max 

{0, x}) is applied as non-linear activation. Following that, we 

perform max-pooling and the resulting output is sub-sampled 

by a factor of 2. Max-pooling achieves translation invariance 

over minuscule spatial shifts in the input image. The 

appropriate decoder in the decoder network up samples its input 

feature maps by resizing-interpolation. This step engenders 

sparse feature maps which are convolved with a trainable 

decoder filter bank to engender dense feature maps. Batch 

normalizations are also applied. The high dimensional feature 

representation at the output of the final decoder is victualed to 

a trainable softmax classifier. The output of the classifier is a K 

channel image of classification probabilities, where K is the 

number of classes. The k value is set to 2 where pixels are 

classified as inside/outside salt body. 

Training process used here: 

The authors' train and test the network utilizing SEAM Phase 

1 dataset. This dataset contains a 3D seismic volume which a 

salt body subsists in the middle. They utilize the 2D single-

channel seismic amplitude data as our input to the network. The 

challenge is to identify the salt body, from a strepitous seismic 

image. The network can only learn from the subtle features such 

as high reflectivity and largely dipped boundary. They culled 8 

crossline 2D slices as training data. The training labels are 

manual annotations engendered by optimal path picking 

method (Wu et al., 2017). Afore each epoch, the training set is 

shuffled. Compared to the size of the model, this is a fairly 

minute dataset; however, the bottleneck architecture ascertains 

that essential relationship are captured. The model weights, or 

parameters, are initialized utilizing the technique described in 

He et al. (2015). They utilize the cross-entropy loss as the 

objective function, and adaptive momentum descent (Adam) as 

optimization algorithm (Kingma and Ba, 2014) to iteratively 

update the model weights. After 200 epochs of training, the 

model achieves 98.77% ecumenical precision (the percentage 

of pixels correctly relegated in the image). The figure here 

shows the training results of culled data samples. The salt 

likelihood is the probability output of the softmax classifier, and 

the prognostications are assigned by max-likelihood class. 

Compared to the ground truth, the training precision is 

proximately as good as the human interpretation. 

The input and output shapes are listed in the format: [samples 

number, image height, image width, channels number]. All 

samples numbers are not fixed in the network since multiple 

data samples can run in parallel. Note that the initial input image 

has 1 channel i.e. the seismic amplitude, and the final output 

has 2 channels i.e. binary classification. The intermediate 

channels represent multiple feature maps. 

D. Validation tests 

The authors' first test the performance of the trained model at 

different crossline slices. Figure 9 shows the network output of 

these unseen crossline slices. Since these slices are still 

crossline slices, they apportion some kindred features with the 

training data. 

It is noticeable that some noisy artifacts appear as “holes” in 

the detected salt body; however, the global shape of the salt 

body is extracted accurately, especially on the top boundary of 

the salt. To visualize the result, they extract the top salt 

locations with > 0:6 classification probability. The right column 

in the figure clearly shows these top salt boundaries match 

seismic amplitudes accurately. 

The authors then test the model on inline slices. The inline 

slices consists of images significantly different from the 

training set. The performance on this test can imply whether the 

network successfully learn important features independently to 

the view perspective. Figure 9 shows the network outputs of 

these inline slices. The first row of Figure 4 only contains a salt 

intrusion at the bottom-left corner, but the network seems to 

falsely classify some of the horizontal reflections as salt. The 

second to the seventh rows show that the salt bodies are 

correctly detected; however, the deeper parts of the images 

where seismic. The 8 rows represent 8 crossline samples 

extracted at inline locations different from the ones used in 
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training set: [25, 75, 125, 175, 225, 275, 325,375]. From left to 

right, seismic amplitude images is the first column; probability 

outputs from softmax classifier of the network is shown in the 

second column; the third column shows salt detection 

prediction results generated by max-likelihood class; the fourth 

column show top salt boundaries by extracting the first 

occurrence of salt likelihood > 0:6. Images are more noisy are 

incorrectly assigned to salt body. The eighth row shows that 

although deeper image part suffers from noise, the salt body in 

the shallow part is still correctly delineated. Except for the first 

row example, all examples show good detections of the top 

boundary of the salt body. 

 

 
Fig. 9.  Selected crossline test samples and their network output 

visualizations. The 8 rows represent 8 crossline samples extracted at inline 

locations different from the ones used in training set: [25, 75, 125, 175, 225, 

275, 325, 375]. From left to right, the first column show seismic amplitude 

images; the second column show probability outputs from softmax classifier 

of the network; the third column show salt detection prediction results 

generated by max-likelihood class; the fourth column show top salt 

boundaries by extracting the first occurence of salt likelihood > 0:6 

 

Based on these results, the authors conclude that the 

proposed method can generalize well even when trained with 

only small dataset; the top boundary detection is the most robust 

prediction by the network. 

 
Fig. 10.  Selected training samples and their network output visualizations. 

The 4 rows represent 4 crossline samples extracted at inline locations: [0, 150, 

250, 350]. From left to right, the first column show seismic amplitude images; 

the second column show probability outputs from softmax classifier of the 

network; the third column show salt detection prediction results generated by 

max-likelihood class; the fourth column show manual annotations used in the 

training 

3. Conclusion 

We present a survey of the different approaches used by 

various authors in order to solve the challenging multistep 

seismic model-building problem. Most of them use a deep 

learning system to map out a salt body in the sub surface, using 

raw seismic recordings as input. 

 In [2], the authors have employed a multi-layered deep 

convolutional neural network that is capable of 

capturing subtle salt features automatically without the 

need for manual input. This model has also been 

efficiently applied to a whole 3D volume of seismic 

data. 

 In [3], the authors have decided on adopting Extremely 

Randomized Trees after going through a number of 

other promising machine learning techniques.  

 In [5], A distinguishing aspect of the solution is the use 

of the Wasserstein loss function, which is suited to 

problems in which the outputs have spatial layout 

dependency. The authors demonstrate the system’s 

performance on real world data sets with complex salt 

body formations. 

The application of machine learning approaches to seismic 

imaging and interpretation shows great promise in hydrocarbon 

exploration and can dramatically change how the vast amount 

of seismic data is used in the future. 
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