
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

638

Abstract: This survey paper aims to illustrate the multiple

problems and their innovative solutions in the fields of compiler

optimization, performance and error removal and large scale

database transaction abstractions common in Compiler Design

heuristics. The performance of the code generated by a compiler

depends on the order in which the optimization passes are applied.

In the context of high-level synthesis, the quality of the generated

circuit relates directly to the code generated by the front-end

compiler. In simpler terms, choosing a good order of sequences is

the phase ordering problem. The compiler can’t switch to finding

the most optimal solution, since it is an NP-Hard problem.

However, sub optimal heuristics are employed to capitalize on this

criteria. While this is the problem that is at the core of compiler

designing, compilation errors set an equally challenging constraint

to the programmer. To combat this, multiple heuristics have been

employed with the help of Machine Intelligence, offering a

reduction in resource consumption. Another chief area of interest

is the exhibition of inefficient executions dominated by massive

memory stalls in online transaction processing. To this end,

profile-driven compiler optimizations to revamp the code layout in

commercial workloads provide a massive improvement in

instruction cache behaviours. This paper surveys novel methods

using Machine Learning, Data Mining, Pattern Analysis and

Natural Language Processing, to reduce the state-space for

searching the most optimal sub-sequences.

Keywords: Cache Behaviour, Data Mining, Machine Learning,

Natural Language Processing, Optimization, Survey

1. Introduction

It has always been a struggle for the programmers to find and

code in the most efficient way possible, or to code in the most

optimized of manners. This has a plethora of real life impacts,

with multiple languages surfacing as functional programming

takes over the design process. One such example is the use of

databases in online platforms, with a powerful backend to

crunch massive amounts of data. This has become even harder

with the availability of multiple compilers, making the

paradigm shift very imminent. An optimized machine

outperforms others in any given setting, and this criteria extends

to the compiler, whose code generation decides the working

process. To this end, we identify three unique problems in

efficient compiler designing:

1. Finding Effective Code Sequences.

2. Resolving and Correcting Errors

3. Efficient Code Layout Optimization in Web deployments

To this end, 3 papers in particular have been surveyed, where

each paper deals with a specific part of the problem. This paper

is broadly divided into 3 categories, where the topics are finding

effective code sequences, resolution and correction of errors,

and code layout optimization in web deployments. All of the

subtopics of interest are explored in some detail.

2. Literature survey

A. Finding effective code sequences

The first paper by Ameer Haj-Ali et. al. deals with compiler

optimization in sequence passes and high-level synthesis.

Essentially, it is a phase ordering problem that can be solved

using Machine Learning and Reinforcement Learning. Recent

breakthroughs and advancements in the fields of Machine

Intelligence has pushed the idea of Deep Reinforcement

Learning for a solution over the phase ordering problem. As is

a standard Reinforcement Learning approach, a learning agent

takes an action on the observed the state of the environment.

The ultimate goal for any such agent is to compute a mapping

policy between state of the environment and viable actions for

the maximal long term reward. The main two long term

rewarding approaches used in the paper are Deep Q-Network

(DQN)and Policy Gradient (PG). The paper delves into analysis

passes to extract as many as 56 static features from an

intermediate representation of the LLVM program. The

features were defined as number of blocks, instructions,

branches, etc. The RL states are represented as a series of

penalties and rewards for either the features extracted or a graph

of applied passes to a Reinforcement Learning Agent. A reward

is added onto the agent’s working everytime a sequence of

passes performs better than -O3 within a reasonable amount of

time. 12 HLS benchmarks were taken from multiple surveys

and batches for high-level synthesis. The HLS metric is a

product from the LegUp material referenced in the paper. Upon

comparisons with state-of-the-art approaches like Greedy

Algorithms, Genetic Algorithms, Random Search (of state

space), -O3, DQN and PG both outperformed the former, with

DQN reaching similar results for multiple sequence lengths.

With Genetic Algorithms matching the same circuit speedup of

16%, RL methods proved to be almost 3x faster, making them

more viable for the compiler sequences. Moreover, retraining

A Survey of Adaptive Compiler Optimization

Heuristics

Aamir Syed1, Ashwin Harish2, Keerthana Purushotham3, Sini Anna Alex4

1,2,3Student, Dept. of Computer Science and Engg., M. S. Ramaiah Institute of Technology, Bangalore, India
4Assistant Professor, Dept. of Computer Science and Engg., M. S. Ramaiah Inst. of Tech., Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

639

agents for multiple systems holds the ability to improve runtime

even further.[1][4]

B. Resolution and correction of errors

The paper by Khushali et. al. deals with the second problem

in particular, taking care of the errors generated due to human

error. The first of the two papers deals with correction and

mitigation of errors using hashtags for comparison with a faulty

/ error ridden program. It delves into the use of programming

practices in most academic institutions, which leads to

discombobulation for newcomers into the field of

programming. Correction of such errors is an issue of the

highest importance, and a resource consuming process. The

system proposed in the paper deals with correction of compile

time errors using Data Mining and Machine Learning

techniques. All programs are analyzed and broken into classes

in a given database, where all logically incorrect programs are

compared with to form pattern sequences using hashtags. The

incorrect programs are then analyzed using Machine Learning

and suggestions to correct them are given. A rule table

comparison is mentioned as the inception for the pattern

analysis approach used in the paper, while programming

properties and pointer dereferences form the major part of

suggestion building using Machine Learning. Control Flow

Graphs (CFG), SVMs, Decision Trees, etc are used for the

predicate analysis in program statements. The paper delves into

heuristics for each of the building practices using Machine

Learning. The latter three referenced developments include

automated detection of logical errors using source code, logical

error correction systems using Genetic Algorithms with

statistical CFG techniques, and dependency analysis for

precision increase. Fuzzy Logic with Apriori-All, Expression

mining, analyzing data dependencies and merge rules form the

majority of concepts in the respective developments. Logical

errors are broached upon, with missing invariants forming the

base for a solution using Data Mining techniques. Each

program is visualized as a step of functions, and suggestions are

given via a Machine Learning algorithm using profiling and

previous data. Modification and code embeddings are

suggested to the user, where code is embedded by replacing the

whole code. The proposed system in the paper forms a 7-part

sequence: Construction of the Compiler, Programming

Construction, Comparing the programs, Deducing the errors,

Classifying the errors, Recommending the right solution, and

Embedding the correct solution. The first part of the sequence

explains the architecture of the compiler, and software

efficiency of it. The next part deals with comparison with the

correct source program, focusing on modularity of code and

logic comparison. The third part compiles the correct source

program and the current incorrect one, upon differences of

which takes 2 distinct operations. If the programs follow a

different line of logical building, incorrect program is replaced

by the source code without showing any errors. Else, the

missing code is transferred to the data mining device (DMD)

for base profiling. The errors are then deduced, missing part of

the code is designated using data mining and profiling. This

forms the 4th step of the series. The next step deals with

classification of errors into logical, syntactical, and runtime

errors. Machine Learning is used to get the syntactical and

runtime error for suggestions, while logical errors require

description of each element in addition to the Machine Learning

program. Moreover, they need to be processed individually

since each solution of a problem may consist of multiple correct

logical iterations. Each new logic is stored in the database (db)

using a hashtag, which serves as the reference for

storing/retrieving them. They have 3 inherent properties,

namely, uniqueness, individual definition for programs with

unique logic, and case sensitivity. Depending on the type of

error, the right solution is identified and suggested to the user.

If the user makes changes and runs the program without the

errors, the change is learnt by the machine for future

suggestions. This marks the end of the 6th iteration of the

sequence. The final iteration involves embedding of the correct

solution in a program, which is done in the form of a macro or

a new function, depending on the requirement of the user. The

advantages and disadvantages of such a machine are later

discussed in the paper [2], [3].

C. Code layout optimization in web deployments

Ramirez et. al. illustrates and develops an efficient approach

to solving memory stalls in online database transactions. As the

paper states, many architecture level heuristics have been

employed to increase the efficiency of the operations, even with

highly complex system designs. Large instruction and data

footprints initiate such behaviours, and little work has been

done to improve the underlying code layout for compiler-level

optimizations. The paper concludes that code layout

optimizations account for a marked improvement of instruction

cache behaviour, providing a marked reduction of application

misses, upto 55% - 65% in 64-128K caches. Another interesting

point of note is that a significantly large number of instructions

misses are because of self-interference. The overall

performance with optimizations is improved by 1.33 times in

the execution time of the workload. All the code layout

algorithms mentioned are profile driven, the optimizations

being implemented in the context of Spike. Pixie or DCPI [5]

have been used to collect basic block execution counts. Spike

builds the Control Flow Graphs (CFG) for all procedures, and

the call graph for the program. Call graphs include edges or

branches between procedures, where the edge weight of the

branch is determined by number of executions of the basic

block. For CFGs, the control flow edges are weighted, weights

being estimated from the basic block counts. The three main

layout algorithms discussed here are Basic Block Chaining,

Fine-Grain Procedure Splitting, and Procedure Ordering. Basic

Block chaining is the idea of a simple greedy algorithm, where

all flow edges are sorted with respect to their weights in

descending order. Each flow edge has a source and a destination

block, which can be chained together if they don’t have a

successor and a predecessor block respectively. The algorithm

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

640

removes unconditional branches that are frequently executed,

and the chaining completes every edge has been processed. This

procedure yields one or more chains, which are sorted again by

execution count on the first basic block. All the chains are

placed in decreasing order, with the chain containing the

procedure entry block being placed first. Fine-Grain Procedure

Splitting deals with division of chains into multiple code-

segments, where each segment is substituted as a discrete

procedure in Spike. This leads to a program that consists of

multiple segments, (where each segment has a few basic

blocks) expected to execute sequentially. This adds another

degree of flexibility for follow-on procedure ordering

approaches. Procedure Ordering is a sorting attempt to place

related procedures adjacently or close to one another. This is a

simple and direct implementation of Pettis and Hansen [6]. The

next order of business is defining a profiling scheme, on which

the compiler optimization problem is built. A basic workload is

set up and scaled after the TCB-B benchmark. To abstract

latencies, OLTP runs were configured with multiple server

processes per processor, 8 in this case. The OLTP profile data

was collected using Pixie, with the original binary startup of

database, cache in memory, etc. The server processes that are

dedicated to client request executions are ‘pixified’ binary. This

is done to focus only on the components of the given workload

that deal with transaction processing. Kernel profiles are also

collected, using tools that stem from PC sampling that uses

Alpha performance counters. Profile data was hence derived.

To evaluate performance measures, full system simulations and

direct machine measurements are both involved for execution

time, instruction cache misses, TLB performance, etc. An OS

environment was set up for simulation of both user and system

code. With analysis and subsequent enhancements, the code

layout optimization improved workload efficiency, which is

attributed to optimizations in the behaviour of the instruction

cache of the application. It further delves into isolated database

application environments to understand instruction cache

behaviours. The paper also illustrates interaction between OS

instruction streams and applications [7].

3. Discussions

In our survey, we have identified that reduction of state

space, frequency patterns, etc. are involved in designing an

efficient compiler. Deep Learning and Neural Networks can

also be used to improve compiler performance, by treating the

state space of sequences as input features, and by iterating

through all of them till the most efficient of them is found. By

exploiting multiple avenues for the same, it was apparent that

efficient tools require an efficient programmer to work with,

and to that end we have delved into programming practices and

correction of common program errors. The Machine Learning

and Data Mining approaches to the same are being used to

improve overall efficiency and performance of the compilers.

This type of work can be seen put together in practical examples

using web services that employ huge backends, which has been

abstracted as a series of code layout algorithms. Using

instruction cache optimization techniques, code layout

efficiency increased, which led to an overall efficient design.

4. Conclusion

A survey on ongoing research for compiler designs and

optimization shows how various subsystems together

contribute to an efficient system. This involves optimization of

the compiler architecture and state space itself, along with

making a programmer more efficient in dealing with errors.

This can only be purposeful and practical if there are real time

uses for these, which can be seen affecting performance on a

large scale. Hence, we see a practical approach to web ontology

of compilers, and how optimization can lead to efficiency in this

respect. This entails the use of available stream of Machine

Intelligence heuristics like Machine Learning, Data Mining,

etc., in which respect the papers have been explored and

surveyed. This is to understand and leverage modern

technology to improve existing designs and impact them

positively. The survey paper is meant to be an aggregation of

research being conducted in the above mentioned fields. It is

meant only to serve as a reference and as well as a benchmark

for researchers working on innovative techniques to build better

heuristic approaches to design and efficiency of compilers.

References

[1] Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, Ion Stoica,

Krste Asanovic, John Wawrzynek, “AutoPhase: Compiler Phase-

Ordering for High-Level Synthesis with Deep Reinforcement Learning”,

cs. LG, Cornell University, New York, January 2019.

[2] Khushali Deulkar, Jai Kapoor, Priya Gaud, Harshal Gala, “A Novel

Approach to Error Detection and Correction of C Programs Using

Machine Learning and Data Mining”, International Journal on

Cybernetics & Informatics, Vol. 5, No. 2, April 2016.

[3] K K Sharma, Kunal Banerjee, Indra Vikas, Chittaranjan Mandal,

“Automated Checking of the Violation of Precedence of Conditions in

else-if Constructs in Student’s Programs”, IEEE International Conference

on MOOC, Innovation and Technology in Education (MITE), 2014.

[4] L. K. et al., “Reinforcement learning: A survey,” Journal of Artificial

Intelligence Research, vol. 4, 1996, pp. 237–285.

[5] J. A. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,

S. T. Leung, R. L. Sites, M. T. Vandervoorde, C. A. Waldspurger, and W.

E. Weihl. “Continuous profiling: Where have all the cycles gone?” in

Proceedings of the 16th International Symposium on Operating Systems

Principles, pages 1–14, October 1997.

[6] K. Pettis and R. C. Hansen. “Profile guided code positioning.” Proc. ACM

SIGPLAN Conf. on Programming Language Design and Implementation,

pp. 16–27, June 1990.

[7] “Code layout optimizations for transaction processing workloads”, ACM

SIGARCH Computer Architecture News, 2001.

