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Abstract: This survey paper aims to illustrate the multiple 

problems and their innovative solutions in the fields of compiler 

optimization, performance and error removal and large scale 

database transaction abstractions common in Compiler Design 

heuristics. The performance of the code generated by a compiler 

depends on the order in which the optimization passes are applied. 

In the context of high-level synthesis, the quality of the generated 

circuit relates directly to the code generated by the front-end 

compiler. In simpler terms, choosing a good order of sequences is 

the phase ordering problem. The compiler can’t switch to finding 

the most optimal solution, since it is an NP-Hard problem. 

However, sub optimal heuristics are employed to capitalize on this 

criteria. While this is the problem that is at the core of compiler 

designing, compilation errors set an equally challenging constraint 

to the programmer. To combat this, multiple heuristics have been 

employed with the help of Machine Intelligence, offering a 

reduction in resource consumption. Another chief area of interest 

is the exhibition of inefficient executions dominated by massive 

memory stalls in online transaction processing. To this end, 

profile-driven compiler optimizations to revamp the code layout in 

commercial workloads provide a massive improvement in 

instruction cache behaviours. This paper surveys novel methods 

using Machine Learning, Data Mining, Pattern Analysis and 

Natural Language Processing, to reduce the state-space for 

searching the most optimal sub-sequences.  

 

Keywords: Cache Behaviour, Data Mining, Machine Learning, 

Natural Language Processing, Optimization, Survey 

1. Introduction 

It has always been a struggle for the programmers to find and 

code in the most efficient way possible, or to code in the most 

optimized of manners. This has a plethora of real life impacts, 

with multiple languages surfacing as functional programming 

takes over the design process. One such example is the use of 

databases in online platforms, with a powerful backend to 

crunch massive amounts of data. This has become even harder 

with the availability of multiple compilers, making the 

paradigm shift very imminent. An optimized machine 

outperforms others in any given setting, and this criteria extends 

to the compiler, whose code generation decides the working 

process. To this end, we identify three unique problems in 

efficient compiler designing: 

1. Finding Effective Code Sequences. 

2. Resolving and Correcting Errors 

3. Efficient Code Layout Optimization in Web deployments 

 

To this end, 3 papers in particular have been surveyed, where 

each paper deals with a specific part of the problem. This paper  

is broadly divided into 3 categories, where the topics are finding 

effective code sequences, resolution and correction of errors, 

and code layout optimization in web deployments. All of the 

subtopics of interest are explored in some detail.  

2. Literature survey 

A. Finding effective code sequences 

The first paper by Ameer Haj-Ali et. al. deals with compiler 

optimization in sequence passes and high-level synthesis. 

Essentially, it is a phase ordering problem that can be solved 

using Machine Learning and Reinforcement Learning. Recent 

breakthroughs and advancements in the fields of Machine 

Intelligence has pushed the idea of Deep Reinforcement 

Learning for a solution over the phase ordering problem. As is 

a standard Reinforcement Learning approach, a learning agent 

takes an action on the observed the state of the environment. 

The ultimate goal for any such agent is to compute a mapping 

policy between state of the environment and viable actions for 

the maximal long term reward. The main two long term 

rewarding approaches used in the paper are Deep Q-Network 

(DQN)and Policy Gradient (PG). The paper delves into analysis 

passes to extract as many as 56 static features from an 

intermediate representation of the LLVM program. The 

features were defined as number of blocks, instructions, 

branches, etc. The RL states are represented as a series of 

penalties and rewards for either the features extracted or a graph 

of applied passes to a Reinforcement Learning Agent. A reward 

is added onto the agent’s working everytime a sequence of 

passes performs better than -O3 within a reasonable amount of 

time. 12 HLS benchmarks were taken from multiple surveys 

and batches for high-level synthesis. The HLS metric is a 

product from the LegUp material referenced in the paper. Upon 

comparisons with state-of-the-art approaches like Greedy 

Algorithms, Genetic Algorithms, Random Search (of state 

space), -O3, DQN and PG both outperformed the former, with 

DQN reaching similar results for multiple sequence lengths. 

With Genetic Algorithms matching the same circuit speedup of 

16%, RL methods proved to be almost 3x faster, making them 

more viable for the compiler sequences. Moreover, retraining 
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agents for multiple systems holds the ability to improve runtime 

even further.[1][4] 

B. Resolution and correction of errors 

The paper by Khushali et. al. deals with the second problem 

in particular, taking care of the errors generated due to human 

error. The first of the two papers deals with correction and 

mitigation of errors using hashtags for comparison with a faulty 

/ error ridden program. It delves into the use of programming 

practices in most academic institutions, which leads to 

discombobulation for newcomers into the field of 

programming. Correction of such errors is an issue of the 

highest importance, and a resource consuming process. The 

system proposed in the paper deals with correction of compile 

time errors using Data Mining and Machine Learning 

techniques. All programs are analyzed and broken into classes 

in a given database, where all logically incorrect programs are 

compared with to form pattern sequences using hashtags. The 

incorrect programs are then analyzed using Machine Learning 

and suggestions to correct them are given. A rule table 

comparison is mentioned as the inception for the pattern 

analysis approach used in the paper, while programming 

properties and pointer dereferences form the major part of 

suggestion building using Machine Learning. Control Flow 

Graphs (CFG), SVMs, Decision Trees, etc are used for the 

predicate analysis in program statements. The paper delves into 

heuristics for each of the building practices using Machine 

Learning. The latter three referenced developments include 

automated detection of logical errors using source code, logical 

error correction systems using Genetic Algorithms with 

statistical CFG techniques, and dependency analysis for 

precision increase. Fuzzy Logic with Apriori-All, Expression 

mining, analyzing data dependencies and merge rules form the 

majority of concepts in the respective developments. Logical 

errors are broached upon, with missing invariants forming the 

base for a solution using Data Mining techniques. Each 

program is visualized as a step of functions, and suggestions are 

given via a Machine Learning algorithm using profiling and 

previous data. Modification and code embeddings are 

suggested to the user, where code is embedded by replacing the 

whole code. The proposed system in the paper forms a 7-part 

sequence: Construction of the Compiler, Programming 

Construction, Comparing the programs, Deducing the errors, 

Classifying the errors, Recommending the right solution, and 

Embedding the correct solution. The first part of the sequence 

explains the architecture of the compiler, and software 

efficiency of it. The next part deals with comparison with the 

correct source program, focusing on modularity of code and 

logic comparison. The third part compiles the correct source 

program and the current incorrect one, upon differences of 

which takes 2 distinct operations. If the programs follow a 

different line of logical building, incorrect program is replaced 

by the source code without showing any errors. Else, the 

missing code is transferred to the data mining device (DMD) 

for base profiling. The errors are then deduced, missing part of 

the code is designated using data mining and profiling. This 

forms the 4th step of the series. The next step deals with 

classification of errors into logical, syntactical, and runtime 

errors. Machine Learning is used to get the syntactical and 

runtime error for suggestions, while logical errors require 

description of each element in addition to the Machine Learning 

program. Moreover, they need to be processed individually 

since each solution of a problem may consist of multiple correct 

logical iterations. Each new logic is stored in the database (db) 

using a hashtag, which serves as the reference for 

storing/retrieving them. They have 3 inherent properties, 

namely, uniqueness, individual definition for programs with 

unique logic, and case sensitivity. Depending on the type of 

error, the right solution is identified and suggested to the user. 

If the user makes changes and runs the program without the 

errors, the change is learnt by the machine for future 

suggestions. This marks the end of the 6th iteration of the 

sequence. The final iteration involves embedding of the correct 

solution in a program, which is done in the form of a macro or 

a new function, depending on the requirement of the user. The 

advantages and disadvantages of such a machine are later 

discussed in the paper [2], [3]. 

C. Code layout optimization in web deployments 

Ramirez et. al. illustrates and develops an efficient approach 

to solving memory stalls in online database transactions. As the 

paper states, many architecture level heuristics have been 

employed to increase the efficiency of the operations, even with 

highly complex system designs. Large instruction and data 

footprints initiate such behaviours, and little work has been 

done to improve the underlying code layout for compiler-level 

optimizations. The paper concludes that code layout 

optimizations account for a marked improvement of instruction 

cache behaviour, providing a marked reduction of application 

misses, upto 55% - 65% in 64-128K caches. Another interesting 

point of note is that a significantly large number of  instructions 

misses are because of self-interference. The overall 

performance with optimizations is improved by 1.33 times in 

the execution time of the workload. All the code layout 

algorithms mentioned are profile driven, the optimizations 

being implemented in the context of Spike. Pixie or DCPI [5] 

have been used to collect basic block execution counts. Spike 

builds the Control Flow Graphs (CFG) for all procedures, and 

the call graph for the program. Call graphs include edges or 

branches between procedures, where the edge weight of the 

branch is determined by number of executions of the basic 

block. For CFGs, the control flow edges are weighted, weights 

being estimated from the basic block counts. The three main 

layout algorithms discussed here are Basic Block Chaining, 

Fine-Grain Procedure Splitting, and Procedure Ordering. Basic 

Block chaining is the idea of a simple greedy algorithm, where 

all flow edges are sorted with respect to their weights in 

descending order. Each flow edge has a source and a destination 

block, which can be chained together if they don’t have a 

successor and a predecessor block respectively. The algorithm 
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removes unconditional branches that are frequently executed, 

and the chaining completes every edge has been processed. This 

procedure yields one or more chains, which are sorted again by 

execution count on the first basic block. All the chains are 

placed in decreasing order, with the chain containing the 

procedure entry block being placed first. Fine-Grain Procedure 

Splitting deals with division of chains into multiple code-

segments, where each segment is substituted as a discrete 

procedure in Spike. This leads to a program that consists of 

multiple segments, (where each segment has a few basic 

blocks) expected to execute sequentially. This adds another 

degree of flexibility for follow-on procedure ordering 

approaches. Procedure Ordering is a sorting attempt to place 

related procedures adjacently or close to one another. This is a 

simple and direct implementation of Pettis and Hansen [6]. The 

next order of business is defining a profiling scheme, on which 

the compiler optimization problem is built. A basic workload is 

set up and scaled after the TCB-B benchmark. To abstract 

latencies, OLTP runs were configured with multiple server 

processes per processor, 8 in this case. The OLTP profile data 

was collected using Pixie, with the original binary startup of 

database, cache in memory, etc. The server processes that are 

dedicated to client request executions are ‘pixified’ binary. This 

is done to focus only on the components of the given workload 

that deal with transaction processing. Kernel profiles are also 

collected, using tools that stem from PC sampling that uses 

Alpha performance counters. Profile data was hence derived. 

To evaluate performance measures, full system simulations and 

direct machine measurements are both involved for execution 

time, instruction cache misses, TLB performance, etc. An OS 

environment was set up for simulation of both user and system 

code. With analysis and subsequent enhancements, the code 

layout optimization improved workload efficiency, which is 

attributed to optimizations in the behaviour of the instruction 

cache of the application. It further delves into isolated database 

application environments to understand instruction cache 

behaviours. The paper also illustrates interaction between OS 

instruction streams and applications [7]. 

3. Discussions 

In our survey, we have identified that reduction of state 

space, frequency patterns, etc. are involved in designing an 

efficient compiler. Deep Learning and Neural Networks can 

also be used to improve compiler performance, by treating the 

state space of sequences as input features, and by iterating 

through all of them till the most efficient of them is found. By 

exploiting multiple avenues for the same, it was apparent that 

efficient tools require an efficient programmer to work with, 

and to that end we have delved into programming practices and 

correction of common program errors. The Machine Learning 

and Data Mining approaches to the same are being used to 

improve overall efficiency and performance of the compilers. 

This type of work can be seen put together in practical examples 

using web services that employ huge backends, which has been 

abstracted as a series of code layout algorithms. Using 

instruction cache optimization techniques, code layout 

efficiency increased, which led to an overall efficient design. 

4. Conclusion 

A survey on ongoing research for compiler designs and 

optimization shows how various subsystems together 

contribute to an efficient system. This involves optimization of 

the compiler architecture and state space itself, along with 

making a programmer more efficient in dealing with errors. 

This can only be purposeful and practical if there are real time 

uses for these, which can be seen affecting performance on a 

large scale. Hence, we see a practical approach to web ontology 

of compilers, and how optimization can lead to efficiency in this 

respect. This entails the use of available stream of Machine 

Intelligence heuristics like Machine Learning, Data Mining, 

etc., in which respect the papers have been explored and 

surveyed. This is to understand and leverage modern 

technology to improve existing designs and impact them 

positively. The survey paper is meant to be an aggregation of 

research being conducted in the above mentioned fields. It is 

meant only to serve as a reference and as well as a benchmark 

for researchers working on innovative techniques to build better 

heuristic approaches to design and efficiency of compilers. 
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