
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

509

Abstract: This survey paper aims to illustrate the evolution in

techniques for optimization of compilers. Optimization of

compilers is a crucial task, and is often the most time expensive

criteria. With the plethora of different compilers available for the

same applications, it is paramount to use the best trade off

available to us. This trade off can be in terms of cost or compilation

time. Compiler suites that are comprehensively optimized offer a

nimiety of benefits to developers and consumers alike, producing

code almost 20-30% faster than standard benchmarks. It is

beneficial to the user as well, extending lower bandwidth and

catering to multiple such users at a time. Loftier optimization

heuristics allow cost reduction in terms of processing power

required, and leverage the best out of the current hardware

architectures available. To this end, it is imperative to employ

modern advancements in Machine Intelligence for the same, and

hence papers dealing with such developments have been discussed

as well. Cache optimizations, Auto-tuning, Instruction Level

Parallelism, Feature Mapping, etc. form the basis of cutting edge

technology, being extended to various consumer fields. This paper

sheds a light on such heuristics and how they have been employed

to the area of compiler design and optimization.

Keywords: Compiler Optimization, Phase Ordering, Memory,

Machine Learning, Survey

1. Introduction

Today, parallelization is of utmost importance, considering

the rise of multicore processors [6]. Currently, there are 2 ways

of obtaining parallelization:

1. User level code

2. Compiler-generated optimized code

Of these 2, user-level code has been shown to be slightly

effective at best, if the compiler generated code is not efficient.

So it becomes necessary to come up with a good compiler level

parallelization algorithm which can augment the user code for

better parallel performance. Making sure that the resources

available in a given system is utilized to its full capacity is one

of the primary goals for all system programs. Another important

aspect is proper optimization of the code.[7]

2. Literature survey

Jay Patel et al. in their research article, have surveyed

numerous code optimization techniques. Their proposed system

consists of making use of Artificial Neural Networks(ANNs) in

the ordering of these optimization techniques. They have made

use of the 4Cast-XL integrated into Jikes RVM optimization

driver. The method involves the generation of a feature vector,

profiles for the program, and then the use of the ANN, for every

dynamically compiled method. ANNs have been used to predict

the best optimization as well [1].

L Almagor et al. in their paper, aim to build an experimental

study for large sequences and compute the accuracy against the

benchmark models. Cost effectiveness of such models has been

computed by studying the space of compilation sequences.

Their prototype compiler build has a feedback loop and a

steering algorithm to pick a compilation order, measure its

impact, and adjust the compilation order. The datasets thus

generated have been analyzed to gain insights into the structure

of the spaces. Genetic Algorithms have been used and improved

to make a better model fit [2].

Iterative Compiler Optimization has been shown to

outperform static approaches, although it is a space expensive

process. F Agakov et al. in their research, have developed a new

methodology for the reduction of this complexity, and thus,

speed up the optimization process. They have made use of

predictive modelling to search the areas likely to give the

greatest performance. The main approaches used here were the

independent model and the Markov model, while evaluations

were done on Texas Instrument C6713 and 1.27 on the AMD

Au1500 platforms [3].

Sameer Kulkarni et al. in their work, have developed an

approach to automatically select good optimization orderings

on a per method basis within a dynamic compiler. A Markov

process has been used for the characterization of the current

state of the optimized code to create a better solution for phase

ordering. The paper proposes to use a machine learning based

approach which automatically learns a good heuristic for phase

ordering. The second approach entails the use of Neuro-

Evolution for Augmenting Topologies (NEAT) for the

generation of customized optimization orderings for each

method in the program. The NEAT has been used to construct

phase ordering, and has been set to 60 neural networks in each

generation, of which only 10 were propagated to the next

generation. This process was allowed to continue and each

successive generation of neural networks produces networks

that perform better than the networks from the previous

generation [4].

A Survey of Machine Intelligence Heuristics in

Modern Compiler Design

Miskin Dash1, Lakshya Sharma2, Mridul Tiwary3, A. Parkavi4

1,2,3Student, Dept. of Computer Science & Engineering, M. S. Ramaiah Institute of Technology, Bangalore, India
4Assistant Professor, Dept. of Computer Science & Engg., M. S. Ramaiah Inst. of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

510

Out of the multitude of compiler optimizations available,

Paul B. Schnek, in his work, has classified them into three

categories: Machine Dependent, Architecture Dependent, and

Architecture Independent. Machine Dependent and

Architecture Dependent optimizations consider the structure of

the computer, but not its detailed instruction set. Architecture

Independent Optimizations are also global, but are based on the

analysis of the program flow graph and the dependencies

among statements of the source program. The McKeeman

evaluation in Machine Dependent optimizations proposes a

postprocessing technique for optimization, which is essentially

a window traversing a sequence of unoptimized code. The

classification of Architecture Dependent optimization is

available for systems with n accumulators, or systems that can

execute several instructions in parallel, or systems that execute

multiple arithmetic and logical instructions upon multiple data

streams. Architecture Independent optimizations have been

split into three types: the frequency analysis, the matrix

analysis, and the graph theoretic analysis [5].

Tarun Kumar [8] in paper aims to analyze various

optimization techniques available for the compiler for a single

core processor. Since different metrics produce a different type

of optimization. Like a compiler may do space optimization or

it may perform speed optimization. The type of optimization to

be done depends on the application. GCC has 3 levels of

optimization, O1, O2 and O3. Each successive levels applying

more aggressive optimization techniques. Although it is not

necessary that higher level will produce more optimized code.

To analyze optimization, the paper uses machine

independent optimization techniques.

Multicube explorer is used for Design Space Exploration.

Intel PIN was used for automatic feature extraction. MiBench

was used for benchmarking and dataset generation for various

application domains. The number of features was limited to 4

as an increase in features increases the search space

exponentially. Graph of various optimizations done by O1, O2

and O3 is plotted over different application domains.

This paper presents an optimization method which uses both

machine independent and machine dependent techniques for

optimizing and transforming code for different machines. The

goal is to produce a code which is optimized to work for a

different system architecture but its code size is not > 10% of

the original code. The steps given below are followed in

sequential order:

 Scalar Variables in Registers: User-defined/local

variables are put in registers to take advantage of

spatial locality.

 Putting common expressions in registers: While the

text code is scanned sequentially, a candidate table is

constructed in which most common expressions are

noted. Then these expressions are also loaded in the

registers.

 Using Special Registers: So far, the techniques

described were machine independent. In this step,

using certain predefined information about the

systems, we obtain the values of special registers.

These registers specialize in certain tasks which makes

it faster to use them for those tasks.

 Pre-Optimization Transforms: This is also a machine

dependent task. Here we exploit the assembly level

working of different machines to produce the optimal

code. For eg, a system might allow its assembly

language to load and store data from the registers in a

single line. Using this, we can reduce the code size

significantly.

 Jump Optimization: Some machines support short

jump instruction, which allows the code to move

forward or backwards from the current location of

execution. A branch table is constructed and the

distance of all the jumps are calculated. If the distance

is high, the short jump is marked as long.

 After all these optimization techniques are applied, the

final speed and space utilization are compared. The

result obtained indicated the the optimization was

successful.

3. Discussion

Given the number of projects requiring fast development of

applications [9], it is necessary to find ways to optimize

compilers in order to develop applications faster. There exists

many methods to optimize compilers ranging from simple

heuristics to complex Machine Learning applications. Each has

its own strengths and limitations. There is no one-fits-all

method that can be applied. It has to be a combination of all

possible methods to optimize the compiler. In recent times, the

rise of AI has given a unique opportunity in the way compilers

can be optimized. It is true that optimizing compilers is difficult

due to the varying hardware instructions

4. Conclusion

Compiler Design is a field of dynamic change with respect to

sequence optimization and capitalization on instruction cache

space. With cutting edge advancements in the fields of

automation, Machine Intelligence, State Space Vectoring, etc.,

it is now possible to select a compiler that has both - a low

resource utilization and a high throughput for available

bandwidth. We have surveyed a few such papers to illustrate

and highlight the current heuristics, and for researchers to draw

conclusions from this to improve upon. To leverage the best out

of the current available hardware with software optimization

improves the architectural framework for any piece of

application, and is bound to be an immensely useful tool for

developers.

References

[1] Jay Patel, Mahesh Panchal - “Code Optimization in Compilers Using

ANN”, International Journal of Computer Science and Mobile

Computing, vol. 3, no. 5, pp. 557-561, May 2014.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

511

[2] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey,

Steven W. Reeves, Devika Subramanian, Linda Torczon, Todd

Waterman, “Finding Effective Compilation Sequences”, Proceedings of

the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and

Tools, LCETS 2004.

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O’Boyle,

J. Thomson, M. Toussaint, C.K.I. Williams - “Using Machine Learning

to Focus Iterative Optimization”, School of Informatics, University of

Edinburgh, UK, 2006.

[4] Sameer Kulkarni, John Cavazos, “Mitigating the Compiler Optimization

Phase-Ordering Problem using Machine Learning”, Proceedings of the

ACM International Conference on Object-oriented programming systems

languages and applications, pp. 147-162, 2012.

[5] Paul B. Schneck, “A Survey of Compiler Optimization Techniques”,

Proceedings of the ACM 1973 Annual Conference, pp. 106-113, 1973.

[6] K. S. McKinley, "A compiler optimization algorithm for shared-memory

multiprocessors," in IEEE Transactions on Parallel and Distributed

Systems, vol. 9, no. 8, pp. 769-787, Aug. 1998.

[7] H. S. Kim, M. J. Irwin, N. Vijaykrishnan, and M. Kandemir, “Effect of

compiler optimizations on memory energy”, The Pennsylvania State

University, 2000.

[8] T. Kumar and R. K. Singh, "Analysis of compiler optimization techniques

by using feature mining technique," 2015 39th National Systems

Conference (NSC), Noida, 2015, pp. 1-6.

[9] D. Boyle, P. Mundy and T. M. Spence, "Optimization and Code

Generation in a Compiler for Several Machines," in IBM Journal of

Research and Development, vol. 24, no. 6, pp. 677-683, Nov. 1980.

[10] Anjan Kumar Sarma, “New trends and Challenges in Source Code

Optimization”, National Institute of Electronics and IT, 2015.

[11] Neeraj Kumar, Saroj Hiranwal, “Improving Code Efficiency by Code

Optimizing Techniques”, IRJET, 2016.

