
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

292

Abstract: Parallel programming is a computation in which

execution is carried out simultaneously and distribution of the

data over disk and perform some task on it simultaneously. When

we have large volume of data then the processing and analyzing of

these data is highly important. The distribution of these data over

the disk and processing is the highly challenging task. In this paper

we present some of the compiler techniques that shows how the

parallel programing is done for large data and how to increase the

performance of the computer to work with such a huge data. The

data placement is the major task that the disk should be able to

store all the data in the memory when the execution starts. In this

paper, we present the techniques for storing and accessing the data

so that the compiler could be cable of doing tasks accurately

without getting interrupted.

Keywords: compiler, parallel programing, loop fusion.

1. Introduction

In today’s world data is the one that got most attention and

analyzing this data and performing the computation is the

challenging task. In most of the computer the task of handling

large data and analyzing is done by the compiler only. This will

be overhead for a compiler and will take more time for

retrieving the data that it want. The compiler can do a better

performance when the burden become less because the

complier takes more time for collecting the data than the

compilation. In this paper, we present the techniques that are

used for the better performance of the compiler when we are

working with the large data. With the parallelism and

optimization of a compiler we can get the better performance.

As discussed above, nowadays the most emerging task is to

deal with data analysis for business improvement. It is simple

while working with a less number of data, but the trend changes

as the data are large in its number which is too complex in

handling them to execute them with less compilation time and

acquire a minimum storage in the disk. To accomplish this task

we will be implementing the concept of parallel execution of

the program. This is not a newly introduced concept but to this

field of data analysis, parallel execution is a new technology

and best method to fit the task of reducing the execution time

and storage usage.

2. Related Work and Discussion

Abelardo López-Lagunas.et.al [1], The data movement in the

program should be efficient so that we can get the high

performance of the computer. By using the stream descriptors,

we provide a memory access pattern for a compiler. In the

stream descriptor the data is divided into small pieces and

mapping is done between the memory units so that access to

this memory should not take overhead by the compiler. By

defining the dependencies between the memory address and the

data, we can access the data easily by the DMA (Direct Memory

Access) by using this stream descriptor. When the input is given

to access the memory a AGU (Address Generation Unit)

generates a bus address by using the descriptors and the

remaining request are put into address queue. The line buffer

stores the elements when the request is granted by the bus. The

stream buffer returns the data in the order that are requested.

Steve Carr Kathryn S.et.al [2]. To improve the execution

time the data in the memory should be organized in a hierarchy

so the compiler can easily access it or else it will take more time

for searching data itself. With the techniques of loop

permutation, loop fusion and distribution we can reduce the

access time of the compiler. The adjacent loops can be

combined so the compiler get less overhead and can improve its

runtime performance.

 Renato Ferreira.et.al [3]. Performing local reduction and

tiling output space are the advanced techniques that can

improve the compiler performance. Dense and sparse

characterization of access pattern gives the better performance.

In sparse execution different strategies are used for removing

the replicated space and converting to tiles to fit in the memory

during the execution. The data that is required is brought into a

memory i.e. ADR (Active Data Repository) and mapping is

done at run time. With these advanced techniques we can

extract the required information from the source and selecting

the appropriate algorithm for execution can improve the

compiler performance.

F. Kuijlman.et.al [4]. The compiler framework is developed

and it can find a placement for the data and perform the

appropriate functions on the data simultaneously. Data

placement should be done in the memory and provide the

annotation for the program to access the data while compiling

the program. This can be done in two steps i.e. analysis phase

and placement selection. In analysis the information of data

placement is used to get placement information of each piece of

Compiler Optimization Techniques to Improve

the Performance for Large Data

K. S. Shivakumara1, V. M. Hemanth2, Akhthar Unnisa3, A. Parkavi4

1,2,3Student, Department of CSE, MSRIT, Bangalore, India
4Assistant Professor, Department of CSE, MSRIT, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

293

code. In selection phase all the selected placement data is used

with the annotations to convert the program to parallel version.

By constructing parse tree, we distribute the data into different

levels and with the help of mapping techniques we can link to

the memory to access the data.

Manish gupta.et.al [5]. The communication cost between the

compiler and memory should be reduced. No compiler provides

a good data partition of the data so an automated partitioning of

the data can used so it will reduce the programmer overhead for

developing the program for efficient partition of data and the

compiler could easily get this information for processing. This

system performs some task in dealing with this data processing,

paraphrase used for parse tree structure, control flow

information and data dependencies. The alignment is used for

mapping the array dimension to a processor, the execution time

and cost is determined by the computational and

communication cost estimator.

Jay Patel.et.al [6].To meet the good efficient program

elimination redundant optimization and manage resources

efficiently in order to meet the efficient code we use some

methods information flow analysis, peer hole optimization in

information flow analyses tries to discover how information is

flow throw the program the information flow analysis is process

of collecting details of the variables used and define here the

minimizing the transformation of assignment statement in the

local block of code during the global optimization is to take the

global variables and expression determine globally and

removing unnecessary code is called dead code elimination in

loop variant the in loop will take more execution time the goal

of combined code motion and register is the instruction in less

frequently and less frequently accessible blocks

Neeraj Kumar.et.al [7].In complier the grammar is the set of

action to do when we combine the both Lex and yac parser it

will become high level routine called yylex() when it need to

take a token from input the Lex will scan the input through input

recognition token when it find token it return the code and value

of yylex() in the storage management it contains the collection

of objects temporary variable and their lifetime the important

goal of the storage management is more economical use of the

memory and there accessibility towards the function to

individual objects in static memory management the compiler

will provide the some fixed set of memory address to the object

at the time of the program translations in dynamic memory

management we allocate the memory by using heap and stack

in stack at the time of procedure call or block entry the

activation record of the object are pushed into the stack the

disadvantage of heap storage management system when the

system allocate the more memory then required at this time the

memory will be waste

Ch. Raju.et.al [8],proposed a system to improve the

optimization of the code which select the program or some part

of the code which gone optimized after selection it perform

transformation and it apply some of the techniques which is

suitable for the code after apply the algorithm the optimized

code will generated and it will give some warning message

code Is generated the new code is saved and after that

complexity comparison is performed between old program

source code and the new generated optimized source code

Enyindah P.et.al [9] to analysis the parsing tree and complier

applications in parsing algorithm the parsing define and

analysis the text which contain the sequences of the token

which determine the structure for the grammar when the

structure of the grammar is valid it will generate the abstract

syntax tree for the source code in fuzzy parsing we take some

part of the source instead of take whole of the source as input

to find the efficiency of the parse so perform analysis of the

selected code part grammar in compiler design when the input

are split into token and design a common grammar to describe

the performance language to develop a translation for the

program developing these grammar is concur about the ability

to find the equivalent grammar the grammar is said to be

equivalent grammar if the two grammar if it describe the same

language that generate the same sentences of output the

compiler design have many applications in network ,OS,

embedded system

Aastha Singh.et.al [10],finding some of the code optimized

techniques which are machine dependent and machine

independent machine dependent means the optimization of the

code is not respect to compilers and processor in machine

dependent code must consider some of the attributes regarding

to the compiler and processer of the system the ANN(artificial

neural network) in this popular machine learning algorithm

which is capable of pattern recognition the system is connected

in the form of network with more of the inter connected neurons

to compute the input and output and feeding information in

network in this paper the proposed system in front end it takes

the code and it generate the features and generate the profiles

applying ANN using 4cast_xl compiler apply optimization and

calculate the speed up of the code at the backend.

Xiaogang Li.et.al [11]. Data mining algorithm focuses on

finding the pattern among the large dataset, but the size of the

dataset is larger in size it takes more computational time to

complete the task. To overcome this, we apply a technique as a

parallel execution of the algorithm. This is shown with the most

complex algorithm in data mining as K-means, KNN, and

Apriori. Here to do this task we are just overwriting the

algorithm in a Java language with an intention that executes in

parallel. By doing this the algorithms are being executed faster

with better accuracy than executing with original as with

handwritten codes and reduce the gap between the compiled

and manual code.

Dhruva R.et.al [12]. At present run-time library support to

handle irregular access but it is necessary to prove for regular

access with is not yet proven. So the author focuses on regular

access application and evaluates the performance using

techniques as PILLAR and CHAOS/PARTI. In which by using

this technique the regular access code using libraries comes

closer to the performance of code generated by a compiler.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

294

Abdourahmane SENGHOR.et.al [13]. In this authors discuss

the improvement of compiler performance with the help of

JOMP’s and JAVAR’s. But the author faces issues while

implementing these two compilers as JOMP is implemented in

Java whereas JAVAR is in C language. Working with two

different languages for design and proposing a compiler is a

difficult job. In the intention of these issues, they decided to

convert the JAVAR into java language which can be done by

using Lexical analyser. By using this instruction are written in

parallel.java which contains files as a parallel loop and multi-

way recursive node. By doing these results to give a better or

equal performance to the best one between JAVAR and JOMP

with the help of parallelizing of matrix sort program.

Jun Cao.et.al [14]. A major goal in this paper is to develop

the model with the reference of quantum chemistry expecting

to increase the ability to predict the properties of the

formulation. It is different as compare to constructing the

formulas manually because as we know the chemistry formula

consists a lot of algebraic expression and equation where the

system should remember all of them and should work with it

which is difficult and consumes more storage along with

compilation time. As to overcome this issues author made a step

to make the system to design the formula with the help of

compiler to which the expression and the algebraic equation

have been imported. By doing this it helps to reduce the

complexity of the code as it was generated by the system and is

been executed with high performance and better accuracy.

3. Conclusion

When we are working with the huge amount of data, data

placement is very important so the compiler could able to

process it without any distraction and with less time. To

improve the performance, we have to use some techniques as

discussed earlier and if we do both accessing the data and

processing simultaneously we can get a better performance with

less time. As discussed some techniques like steam descriptor,

active data repository, loop fusion, automatic partition of data

and the implementation of compiler framework etc. all these

techniques can be used for compiler optimization to handle

large data and can get a better performance.

References

[1] A. Lopez-Lagunas and S. M. Chai, "Compiler manipulation of stream

descriptors for data access optimization," 2006 International Conference

on Parallel Processing Workshops (ICPPW'06), Columbus, OH, 2006,

pp. 8 pp.-344.

[2] Steve Carr Kathryn S. McKinley Chau-Wen Tseng, “Compiler

Optimizations for Improving Data Locality”, 1994.

[3] Renato Ferreira, Gagan Agrawal, Joel Salt Z. “Advanced Compiler and

Runtime Support for Data Intensive Application.”

[4] F. Kuijlman, H.J. Sips, C. van Reeuwijk, and W.J.A. Denissen. A Unified

Compiler Framework for Work and Data Placement.

[5] Manish Gupta, Prithviraj Banerjee. Paradigm: A compiler for automatic

data distribution on multicomputer, 1993.

[6] Jay Patel, Mahesh Panchal, “Code Optimization in Compilers using

ANN,” vol. 3, no. 5, pp. 557-561, May 2014.

[7] Neeraj Kumar, Saroj Hiranwal, “Improving Code Efficiency by Code

Optimizing Techniques,” in International Research Journal of

Engineering and Technology, vol. 3, no. 4, pp. 362-366, April 2016.

[8] Ch. Raju, Thirupathi Marupaka, Arvind Tudigani, “Analysis of Parsing

Techniques &Survey on Compiler Applications,” in International Journal

of Computer Science and Mobile Computing, vol. 2, no. 10, pp. 115-125,

October 2013.

[9] Enyindah P., Okon E. Uko, “The New Trends in Compiler Analysis and

Optimizations,” in International Journal of Emerging Trends &

Technology in Computer Science, vol. 46, no. 2, May 2017.

[10] Aastha Singh, Sonam Sinha, Archana Priyadarshi, “Compiler

Construction,” in International Journal of Scientific and Research

Publications, vol. 3, no. 4, pp. 1-6, April 2013

[11] Xiaogang Li, Ruoming Jin and G. Agrawal, "A compilation framework

for distributed memory parallelization of data mining

algorithms," Proceedings International Parallel and Distributed

Processing Symposium, Nice, France, 2003, pp. 8.

[12] D. R. Chakrabarti, P. Banerjee and A. Lain, "Evaluation of compiler and

runtime library approaches for supporting parallel regular

applications," Proceedings of the First Merged International Parallel

Processing Symposium and Symposium on Parallel and Distributed

Processing, Orlando, FL, USA, 1998, pp. 74-79.

[13] A. Senghor and K. Konate, "A Java Hybrid Compiler for Shared Memory

Parallel Programming," 2012 13th International Conference on Parallel

and Distributed Computing, Applications and Technologies, Beijing,

2012, pp. 131-136.

[14] J. Cao, A. Goyal, S. P. Midkiff and J. M. Caruthers, "An Optimizing

Compiler for Parallel Chemistry Simulations," 2007 IEEE International

Parallel and Distributed Processing Symposium, Rome, 2007, pp. 1-10.

