
International Journal of Research in Engineering, Science and Management  

Volume-2, Issue-4, April-2019 

www.ijresm.com | ISSN (Online): 2581-5792     

 

594 

 

Abstract: The Python programming language has gained 

prominence in a wide range of fields, ranging from Computer 

Science to Medicine and Genetics to Astrophysics and Cosmology.  

The main reasons for this extensive applicability are Python’s 

versatility, the availability of robust, built-in libraries for all 

computations, readability, support for multiple programming 

paradigms and compatibility with several platforms. However, 

Python being an interpreted language, is slower than native, 

compiled languages like C/C++. It is also memory-intensive, due to 

flexible data types and throws a number of runtime errors, owing 

to flawed design. Most of the methods that have been developed to 

overcome Python’s low speed deal with optimizing Just-In-Time 

(JIT) compilers, specific to the Python language, which compile 

the interpreted codes on-the-fly. Some techniques describe general 

methodologies like optimum utilization of GPUs and increasing 

the efficiency of JIT Virtual Machines for dynamic programming 

languages. We present an expansive summary of all cutting edge 

approaches which aim to tackle Python’s low speed, in the hope 

that this would further increase its reach.   

 
Keywords: JIT compilers, runtime, multiprocessing, speed, 

Python, efficiency, Virtual Machines. 

1. Introduction 

The trend of late has been to adapt to dynamic programming 

languages as they are more versatile in a variety of aspects 

including: (a) Being compact and epigrammatic in nature; (b) 

Prevention of wasting time over debugging and semantic errors; 

(c) More tolerant to change and passing coding trends; (d) 

Quality performance in terms of complexity with respect to 

space and time; (e) Being platform independent thereby 

promoting the concept of portability. The most preliminary 

requirement is that there is an absence of a separate compilation 

step. The concept of an incremental, instant or partial 

compilation does not exist and that is why people are switching 

to these faster and less verbose languages. In the realm of High-

performance computing and parallel processing, dynamic 

languages fail to rise to the occasion as it leads to detrimental 

consequences in the form of lack of code completion and most 

importantly, better performance. In lieu of the aforementioned, 

we are using Python as the de-facto programming language as 

it does not involve extending our outreach to a new  

 

programming language and is highly compatible with most of 

the packages and modules available in our constantly evolving 

world. However, speed is an extremely important factor in most 

applications, since a simple Python code takes 10 seconds to 

execute, as compared to the 4 seconds taken by its C++  

counterpart. In order to surpass this hurdle, we have presented 

a concise and complete compendium on how to increase the 

efficiency of Python as a dynamic programming language, with 

the avant-garde mechanism of Just in time compilation (JIT). 

The several frameworks encompassed within Python have 

excelled by removing the unnecessary byte-code thereby 

eliminating wasteful interpretation time. Keeping in mind 

overall complexity with the execution time taken, our proposed 

methodology characterizes several solutions to overcome these 

obstacles, thereby retaining the simplicity of Python and the 

elegance of Just In Time (JIT) compilation approaches. 

2. Literature survey 

The paper by Hannon et. al. describes Just-In-Time 

compilation as the process of dynamically compiling codes 

during execution. It also mentions how JIT compilation takes 

advantage of interpretation as well as inert compilation of 

program codes to perform optimizations that speed up 

processing. The paper mainly deals with developing a parallel 

discrete event simulation engine (PDES) named Simian, that 

performs JIT compilation on interpreted languages – 

JavaScript, Lua, Python and others. The Pending Event Queue 

and Pseudo Random Number Generation aspects of the PDES 

engine were compared and evaluated using the La-PDES 

benchmark suite. Techniques used by interpreted languages to 

invoke C modules have been explored. It was found that JIT 

compilers outperform AOT (Ahead-Of-Time) compilers with 

native data structures while the reverse was true for operations 

that invoke native code. [1] 

The book by G. Morra contains a chapter on how to speed up 

calculations in Python by making optimum use of the NumPy 

module, and avoiding bottlenecks like redundant loops and 

heavily vectorized functions. Morra has clearly illustrated how 

to perform efficient computations using ndarrays, n-
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dimensional indexing and Boolean indexing. After introducing 

basic linear algebra concepts, the chapter describes the working 

of Cython, the superior language which compiles Python code 

dynamically into C code. The mpi4py, a version of the Message 

Passing Interface (MPI) library that enables the distribution of 

code across processors, has been used to write native Python 

code, in order to bring in parallelism into the picture. Finally, 

the Python accelerator, Numba is described as having offered 

an increase in speed of one order of magnitude, while using 

large NumPy arrays in the program code. [2] 

Yangguang Li and Zhen Ming Jiang’s paper is one of the few 

that mentions the effects of the various configuration 

parameters on the performance of PyPy, a Python 

implementation. Two benchmarks have been used to compare 

the execution of PyPy code before and after jitting the code - 

the PyPy benchmark suite and the Tech Empower Web 

Framework Benchmark suite. The systems were divided into 

three groups based on JIT configurations – varying default 

configurations, randomly generated configurations and JIT off, 

which disables the jitting process for the code. It was found that 

systems using the default JIT configuration settings perform 

badly, as compared to the others, and that the optimal 

configuration was system-dependent. To overcome this issue, 

the authors have proposed a tool, PyPyJITTuner, to 

automatically tune the JIT parameters that impact performance, 

using a search-based technique called the ESM-MOGA (Effect 

Size Measurement-based Multi-Objective Genetic Algorithm). 

Systems which used the auto-tuned ESM-MOGA 

configurations showed an improvement of upto 60% in mean 

peak performance, over systems which used the default 

settings. [3] 

Yet another paper by Paras Jain et. al., points to under-

utilization of hardware accelerated devices like GPUs and 

TPUs due to factors like different kernel dimensions, 

unpredictable intervals between process arrivals, and stringent 

latency constraints, while running ML algorithms. The authors 

propound an Out-of-Order (OoO) JIT compiler, built on top of 

VLIW that satisfies SLOs, and reschedules the kernel 

executions dynamically to ensure that the throughput of the 

device is maximized. The paper also describes why time-only 

and space-only GPU multiplexing fails, hence advocating a 

late-binding, aware-of-context approach to programming the 

order of execution of kernels on the GPU. Unlike conventional 

VLIW compilers which only modify code beforehand, this 

aggressive approach uses the concepts of tuning early and 

packing dynamically. [4] 

The versatility of the Python programming language is 

overshadowed by its low runtime performance which makes it 

difficult to use for applications like astrophysics and 

cosmology, which involve massive training and extensive 

datasets. The computational speed of the Python language can 

be increased by either maximizing Just-In-Time (JIT) compiler 

performance, or improving the speed of interpreters. HOPE is a 

Python Just-In-Time compiler that constitutes a superset of the 

popular programming dialect, involving mathematical 

expressions mostly used in astrophysical calculations. It 

converts Python code to C++ to achieve speeds of native 

languages. It is also non-intrusive because it only needs a 

decorator to be added to the function definition in order to be 

enabled, and no unnecessary packages need to be included. The 

paper includes a detailed flow chart of how HOPE handles a 

function call. HOPE was found to increase the performance of 

Python, when tested on the PyCosmo project, by a factor of 2.4 

× –119× x (a value that is benchmark scenario-dependent) [5]. 

Richard Plangger et. al. contributed to the PyPy’s 

vectorization which is built into the tracing just-in-time 

compiler. Tracing JIT’s are based on optimization of hot loops. 

Traditional vectorization methods have a lot of overhead. The 

auto new vectorization method proposed has less overhead and 

provides numerical loop speedup. It makes use of loop 

unrolling, efficient heuristics for instruction categorizing and 

scheduling, guard instruction usage reduction and guard 

strengthening, removal of redundant array index out of bounds 

check, splitting of accumulator for reduction. It also supports 

expansion of scalars and constants. In the algorithm proposed, 

parallel instruction groups are found, extended and combined 

together. The evaluation showed that the vectorizer provides 

speedups which are close to SSE4 instruction set.[6] 

Serge Guelton et. al. presented the Pythran compiler, a 

translator and an optimizer for a portion of Python language. 

Pythran converts the static python modules into C++ code with 

parameters. It supports high level python constructs such as list, 

map, dictionary, lambda functions, polymorphic functions and 

nested functions. It does not support dynamic feature and 

classes. Pythran provides Python-centric code optimization 

unlike existing static python compilers. Pythran provides API 

similar to python standard library as it makes use of C++ library 

which uses template programming. The static Pythran compiler 

has a front-end where python code is converted to internal 

representation, a middle-end where the internal representation 

is optimized, and a back-end where internal representation is 

converted into C++ code. Pythran takes the advantage of 

multiple cores. Using Pythran, high level language code can be 

run at descent speed [7]. 

Wim TLP Lavrijsen in his paper speaks about optimizing the 

ROOT I/O in python using PyPy’s tracing JIT. PyPy aims at 

providing a support framework for producing dynamic 

language implementation and emphasizes on clear separation 

between aspects of implementation and language specification. 

PyPy’s tracing JIT compiles the high level python code to 

machine code at native speeds. The cppyy project provided C++ 

bindings to PyPy. It also kept the code transparent to JIT while 

providing bindings. By applying these cppyy techniques to 

ROOT I/O of python, there was a performance gain of 20x 

times over CPython was gained. However, it still is 2.7x times 

slower compared to C++ [8]. 

Serge Guelton in his paper introduces principles of Pythran 

which is an ahead-of-time compiler for scientific python. 
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Backward compatibility, type agnosticism, high level and pure 

native are the core principles around which Pythran is built. 

Pythran easily generates hundred percent native functions from 

code written in python and puts it into a PyCapsule rather than 

generating an extra conversion layer. PyCapsule is a simple 

PyObject that was introduced in Python C API. Pythran 

provides concurrency support by releasing the Global 

Interpreter Lock after converting Python objects to Pythran 

objects as there would be no more interaction with Python C 

API. Pythran helps pass the native or interpreted boundary and 

hence provides significant speedups without changing the 

original code [9]. 

 This paper by Derek Lockhart primarily focuses on using 

Instruction Set Simulator (ISS) to achieve a balance between 

high productivity and performance levels. The ISS must be 

generated from Architectural Description of Languages (ADLs) 

promoting the fundamental concept of decimal to binary 

translation (DBT) techniques. To achieve this, the concept of 

Pydgin is used where-in directly executable pseudo codes are 

generated using meta-tracing of JIT compilers. To reduce the 

complexity of interpreter codebases, meta–tracing annotation is 

used to simplify the design of dynamic languages. This is 

achieved using the module RPython which provides instruction 

semantics and a modular instruction interpreter which follows 

the mechanism of a translation toolchain. The bytecode 

generated can be obtained from various phases and once the 

loop is finished, the control returns to the jit_merge_point.[10] 

 This paper by Berkin Ilbeyi elucidates on increasing the 

productivity and performance of dynamic programming 

languages thereby motivating the need for just in time 

compilation (JIT). However, while developing JIT optimization 

VM’s consumes a lot of time and effort. Using JIT frameworks, 

abstraction of language definitions seems to be the best possible 

option. A new cross layer methodology is proposed between 2 

frameworks to characterize a variety of standards at the 

application level. Interpreted code is generally 10x magnitude 

times slower that statically compiled code, so using JIT at 

runtime optimizes the bytecode fetch and decode overhead. 

RPython as a framework identifies hot target loops and the 

generates a trace to go about solving the loop. This can be used 

a fundamental premise to describe a recent branched-layer 

characterization methodology that enables inserting branched 

layer annotations at an upper layer and then explicate this at a 

lower level [11]. 

This paper by Juan. G. Galvez and 2 others comments on the 

extremely challenging task of parallel programming. Although 

several mannerisms are deployed to reduce the complexity, they 

have still remained unused for several reasons. Here, a new 

model is proposed namely ChamPy which is primarily 

modelled using the dynamic approach of Python. The salient 

characteristics include an intelligible model and API, better 

pliability and obviously the programming power of the Python 

language. This is a complex model-driven archetype of 

distributed relocatable objects. It reaps gains from several 

modern language features and it can run asynchronous 

concurrent jobs. Molecular dynamics mini apps can also be 

written using the same. Numba JIT compilation is an additional 

feature to this model. It is easy to absorb as it is an introductory 

level programming language. Keeping, High Performance 

Computing (HPC) in mind, message parsing as the de facto 

standard is replaced with a distributed computing framework. 

CharmPy uses the archetype of diffused, and varied relocatable 

objects with nonsynchronous distant procedure citation which 

is mentioned using the concept of objects keeping in mind the 

interlinkage among the same [12]. 

 The work presented in this paper by Mihai Bucurica is 

focused on the realm of furtherance of computational 

orderliness of a finite state automation using the concept of 

cellular technology in a simulated virtual based setup. This is 

achieved using the 3 fundamental pillars i.e. Java, Python and 

Python with an additional package of Numba with Just in Time 

Compilation (JIT). The third option was considered to ramp up 

the speed of the application to ensure completion and fulfilment 

by dispatching it using the beauty of Python. The package 

Numba generated useful and efficient machine code with 

minimal complexity by running it on the LLVM compiler 

framework. It also extends its support to compilation of code on 

any kind of a processing unit and is developed in a manner to 

correlate and combine the technical aspects as well. This is 

implemented to specify and cater to the needs of platform-

neutrality, not swaying to the specifications of the various 

components. It was also observed that the overall 

administrations in total, are superior to those obtained by using 

other programming practices. This was done by improving the 

copy_matrix function. This ensures nominal average 

programming time of several different sections, typically on 

cheaper environments. In total, the all-inclusive time 

complexity associated with Numba through JIT compilation 

superseded that of an average Python code [13]. 

 This paper talks about how essential Python language is in 

the field of performance resulting in higher throughput and 

computerization of scientific aspects. It touches on how the 

language can be broadened by using one of several domains. 

The domains mentioned are Numpy, SciPy, PyPy, Cython and 

Numexpr, resulting in expanding the versatility of the language. 

A multitude of methods have been presented in a concise 

manner which can be referred to thereby promoting the speed 

and optimality of the same. The modularity is also explained, 

resulting in top-notch code thereby, being of great significance 

as well. It makes it clear how this is a notch above the standard 

programming practices as it is definitely a class apart from the 

rest in terms of efficiency obtained. This can be achieved using 

Numba as a single entity or alongside JIT with the vectorization 

feature also [14].  

3. Discussion 

The effortless nature of Python is indispensable and is what 

draws several users to explore and use it with utmost ease. This 
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being the case, Python offers an abundance of features in terms 

of its packages and frameworks. Some of the significant ones, 

that stand out much higher than the rest are: 

The effortless nature of Python is indispensable and is what 

draws several users to explore and use it with utmost ease. This 

being the case, Python offers an abundance of features in terms 

of its packages and frameworks. Some of the significant ones, 

that stand out much higher than the rest are:  

 PyPy – This is a unique framework-based environment 

that Python offers to bring about code that is optimal 

in all measures. With that being said, it uses the 

concept of compilation in the nick of the time. This 

results in code being immediately translated into its 

equivalent machine type. Scripts that are developed 

using this strategy are very storage-efficient as it 

hardly takes up significant memory. The simultaneous 

execution as a process becomes relatively easier, 

making it rapid, speedy and well-ordered. The rate of 

program execution is significantly faster, yielding 

better results; 

 Numba – This is a wonderful aggregate of the two 

most commonly used approaches in our day-to-day 

programming interfaces namely NumPy and Just in 

Time (JIT) compilation mechanism. It was brought 

into existence keeping in mind all the usual coders 

who dealt with quantitative and data-structure directed 

processing units. It is an open source platform that can 

be easily accessed, used by one and all making it user-

friendly and easy to work with. It is the 

conglomeration of a variety of bundles that can be 

used from something like a small-scale application to 

larger applications including distributed computing 

and data warehouses. It focuses on the concept of data 

analytics and varied sciences; 

 CharmPy – This is a relatively new concept that was 

introduced to bring about betterment of the existing 

Python language by additionally boosting it with the 

Charm framework. It focuses on running many jobs 

that are anachronic in nature thereby bringing about 

faster execution rates. This works in association with 

the Numba package combining Just in Time (JIT) 

compilation to literally achieve the best of both 

worlds. It is object oriented in the sense that it 

concentrates primarily on the adducing of objects. The 

key aspect to be kept in mind here, is the processing 

element (PE) that sustains inter and intra class 

similarity. It also provides the added benefit of 

addition and deletion of objects without structurally 

damaging the infrastructure of the framework; 

 Pythran - Pythran, an ahead-of-time compiler was 

developed for scientific python. It provided significant 

speedups over high-level Numpy implementation 

thereby relieving the scientists from the burden of 

using lower-level languages for scientific computing. 

Pythran converts the static python modules into C++ 

code with parameters. It supports high level python 

constructs such as list, map, dictionary, lambda 

functions, polymorphic functions and nested functions 

but unfortunately it does not support dynamic features 

and classes. Pythran provides Python-centric code 

optimization unlike existing static python compilers. 

Pythran outperformed Cython by supporting 

backward compatibility, type agnosticism and high 

level which weren’t supported by Cython; 

 Pydgin –This is the backbone of modern programming 

use case where-in a Python powered DSL is used to 

conjure Instruction Set Simulators. It follows a 

systematic procedure of encoding the rules based on 

semantics obtained and running it through a finite 

loop, delivering an annotation-based tree and 

parallelly a refined script. This is a first-class 

executable that can be spawned across several 

interpreter-based contexts and over suitable 

frameworks as well. 

As Python began to be used more and more across diverse 

sectors, certain shortcomings were noticed, primarily, the low 

computation speed. Two methods were developed to overcome 

this issue, one was that of increasing the speed of interpreters, 

and the other was the optimization of Just-In-Time (JIT) 

compilers. The latter can be done by using parallel discrete 

event simulation engines, message passing interfaces (MPIs), 

tuning configuration parameters so as to provide the best 

performance, enabling complete utilization of hardware 

accelerators like GPUs and TPUs, or by developing JITs which 

are directed at a specific application. 

The distribution of discrete events across computers is called 

parallel discrete event simulation (PDES); it incurs lesser 

overhead in terms of time and memory than serial event 

simulation. Simian is one such PDES engine that performs 

jitting on the codes of interpreted languages. Python packages 

like NumPy have features like vectorized arrays, which, if used 

judiciously, can speed up computation. Cython is a superset of 

the Python language and JIT-compiles Python code into faster 

C code. When the JIT tool, PyPy JIT Tuner was used to 

automatically tune the configuration features and compile 

PyPy, a popular implementation of Python, its average peak 

performance increased up to 60%. Finally, Python JIT 

compilers like HOPE are designed for specific applications, in 

this case, astrophysics and cosmology. By using a subset of the 

Python numerical expressions and compiling the code on-the-

fly, HOPE has managed to raise the speed of Python.   

Loop execution is one of the major reasons behind simple 

python codes taking lot of execution time as compared codes 

written in native languages like C/C++. To overcome this 

problem, Tracing Just-In-Time compilers were developed for 

the optimization of hot loops. Efficient heuristics were used in 

new vectorization methods which resulted in less overhead as 

compared to traditional vectorization methods and resulted in 
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speedups which were close to SSE4 instruction set. The 

working of a JIT model can be explained with respect to 4 

different phases namely the inference phase, optimization 

phase, code generation phase and finally the control returns to 

an arbitrary point defined in the start-up routine namely the JIT 

merge point. 

4. Conclusion 

A detailed examination of the research work based on 

optimizing the Python language has shown that the problems 

once faced due to higher execution time of Python codes as 

compared to its native C/C++ codes is now tackled by using 

Python Just-In-Time compilers like Numba, Pydgin, RPython, 

Cython, Pythran and HOPE. Daunting problems that were 

terribly significant such as loop execution, parallelism, ROOT 

I/O can now be easily conquered using Just-In-Time compilers. 

The wide range of approaches and optimization techniques 

resulted in significant speedups which relieved the burden of 

using lower-level languages for scientific computing. This 

survey paper is drafted to provide a comprehensive summary of 

all revolutionary tried and tested approaches which aim to 

tackle the low speed of the Python language. Most of these 

methods deal with enhancing Just-In-Time (JIT) compilers 

which compile the interpreted Python codes instantly and 

immediately thereby reaping the best benefits of the same. The 

survey paper deals with all the Python frameworks, modules, 

packages that have increased the compilation mechanism 

speeds thereby proving to deliver fruitful results in the fields of 

High-Performance Computing and Parallel Processing. We 

have strived our best to propose an all-inclusive python related 

JIT compiler that touch upon each and every nook and corner 

of this particular domain. We aim to assist researchers and help 

them with their subsequent work by comparing their proposed 

methodologies with the existing ones that have been studied in 

our survey. 
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