
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

594

Abstract: The Python programming language has gained

prominence in a wide range of fields, ranging from Computer

Science to Medicine and Genetics to Astrophysics and Cosmology.

The main reasons for this extensive applicability are Python’s

versatility, the availability of robust, built-in libraries for all

computations, readability, support for multiple programming

paradigms and compatibility with several platforms. However,

Python being an interpreted language, is slower than native,

compiled languages like C/C++. It is also memory-intensive, due to

flexible data types and throws a number of runtime errors, owing

to flawed design. Most of the methods that have been developed to

overcome Python’s low speed deal with optimizing Just-In-Time

(JIT) compilers, specific to the Python language, which compile

the interpreted codes on-the-fly. Some techniques describe general

methodologies like optimum utilization of GPUs and increasing

the efficiency of JIT Virtual Machines for dynamic programming

languages. We present an expansive summary of all cutting edge

approaches which aim to tackle Python’s low speed, in the hope

that this would further increase its reach.

Keywords: JIT compilers, runtime, multiprocessing, speed,

Python, efficiency, Virtual Machines.

1. Introduction

The trend of late has been to adapt to dynamic programming

languages as they are more versatile in a variety of aspects

including: (a) Being compact and epigrammatic in nature; (b)

Prevention of wasting time over debugging and semantic errors;

(c) More tolerant to change and passing coding trends; (d)

Quality performance in terms of complexity with respect to

space and time; (e) Being platform independent thereby

promoting the concept of portability. The most preliminary

requirement is that there is an absence of a separate compilation

step. The concept of an incremental, instant or partial

compilation does not exist and that is why people are switching

to these faster and less verbose languages. In the realm of High-

performance computing and parallel processing, dynamic

languages fail to rise to the occasion as it leads to detrimental

consequences in the form of lack of code completion and most

importantly, better performance. In lieu of the aforementioned,

we are using Python as the de-facto programming language as

it does not involve extending our outreach to a new

programming language and is highly compatible with most of

the packages and modules available in our constantly evolving

world. However, speed is an extremely important factor in most

applications, since a simple Python code takes 10 seconds to

execute, as compared to the 4 seconds taken by its C++

counterpart. In order to surpass this hurdle, we have presented

a concise and complete compendium on how to increase the

efficiency of Python as a dynamic programming language, with

the avant-garde mechanism of Just in time compilation (JIT).

The several frameworks encompassed within Python have

excelled by removing the unnecessary byte-code thereby

eliminating wasteful interpretation time. Keeping in mind

overall complexity with the execution time taken, our proposed

methodology characterizes several solutions to overcome these

obstacles, thereby retaining the simplicity of Python and the

elegance of Just In Time (JIT) compilation approaches.

2. Literature survey

The paper by Hannon et. al. describes Just-In-Time

compilation as the process of dynamically compiling codes

during execution. It also mentions how JIT compilation takes

advantage of interpretation as well as inert compilation of

program codes to perform optimizations that speed up

processing. The paper mainly deals with developing a parallel

discrete event simulation engine (PDES) named Simian, that

performs JIT compilation on interpreted languages –

JavaScript, Lua, Python and others. The Pending Event Queue

and Pseudo Random Number Generation aspects of the PDES

engine were compared and evaluated using the La-PDES

benchmark suite. Techniques used by interpreted languages to

invoke C modules have been explored. It was found that JIT

compilers outperform AOT (Ahead-Of-Time) compilers with

native data structures while the reverse was true for operations

that invoke native code. [1]

The book by G. Morra contains a chapter on how to speed up

calculations in Python by making optimum use of the NumPy

module, and avoiding bottlenecks like redundant loops and

heavily vectorized functions. Morra has clearly illustrated how

to perform efficient computations using ndarrays, n-

A Review of Existing Approaches to Increase

the Computational Speed of the Python

Language

M. Varsha1, S. Yashashree2, Drishya K. Ramdas3, Sini Anna Alex4

1,2,3Student, Department of CSE, M. S. Ramaiah Institute of Technology, Bengaluru, India
4Assistant Professor, Department of CSE, M. S. Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

595

dimensional indexing and Boolean indexing. After introducing

basic linear algebra concepts, the chapter describes the working

of Cython, the superior language which compiles Python code

dynamically into C code. The mpi4py, a version of the Message

Passing Interface (MPI) library that enables the distribution of

code across processors, has been used to write native Python

code, in order to bring in parallelism into the picture. Finally,

the Python accelerator, Numba is described as having offered

an increase in speed of one order of magnitude, while using

large NumPy arrays in the program code. [2]

Yangguang Li and Zhen Ming Jiang’s paper is one of the few

that mentions the effects of the various configuration

parameters on the performance of PyPy, a Python

implementation. Two benchmarks have been used to compare

the execution of PyPy code before and after jitting the code -

the PyPy benchmark suite and the Tech Empower Web

Framework Benchmark suite. The systems were divided into

three groups based on JIT configurations – varying default

configurations, randomly generated configurations and JIT off,

which disables the jitting process for the code. It was found that

systems using the default JIT configuration settings perform

badly, as compared to the others, and that the optimal

configuration was system-dependent. To overcome this issue,

the authors have proposed a tool, PyPyJITTuner, to

automatically tune the JIT parameters that impact performance,

using a search-based technique called the ESM-MOGA (Effect

Size Measurement-based Multi-Objective Genetic Algorithm).

Systems which used the auto-tuned ESM-MOGA

configurations showed an improvement of upto 60% in mean

peak performance, over systems which used the default

settings. [3]

Yet another paper by Paras Jain et. al., points to under-

utilization of hardware accelerated devices like GPUs and

TPUs due to factors like different kernel dimensions,

unpredictable intervals between process arrivals, and stringent

latency constraints, while running ML algorithms. The authors

propound an Out-of-Order (OoO) JIT compiler, built on top of

VLIW that satisfies SLOs, and reschedules the kernel

executions dynamically to ensure that the throughput of the

device is maximized. The paper also describes why time-only

and space-only GPU multiplexing fails, hence advocating a

late-binding, aware-of-context approach to programming the

order of execution of kernels on the GPU. Unlike conventional

VLIW compilers which only modify code beforehand, this

aggressive approach uses the concepts of tuning early and

packing dynamically. [4]

The versatility of the Python programming language is

overshadowed by its low runtime performance which makes it

difficult to use for applications like astrophysics and

cosmology, which involve massive training and extensive

datasets. The computational speed of the Python language can

be increased by either maximizing Just-In-Time (JIT) compiler

performance, or improving the speed of interpreters. HOPE is a

Python Just-In-Time compiler that constitutes a superset of the

popular programming dialect, involving mathematical

expressions mostly used in astrophysical calculations. It

converts Python code to C++ to achieve speeds of native

languages. It is also non-intrusive because it only needs a

decorator to be added to the function definition in order to be

enabled, and no unnecessary packages need to be included. The

paper includes a detailed flow chart of how HOPE handles a

function call. HOPE was found to increase the performance of

Python, when tested on the PyCosmo project, by a factor of 2.4

× –119× x (a value that is benchmark scenario-dependent) [5].

Richard Plangger et. al. contributed to the PyPy’s

vectorization which is built into the tracing just-in-time

compiler. Tracing JIT’s are based on optimization of hot loops.

Traditional vectorization methods have a lot of overhead. The

auto new vectorization method proposed has less overhead and

provides numerical loop speedup. It makes use of loop

unrolling, efficient heuristics for instruction categorizing and

scheduling, guard instruction usage reduction and guard

strengthening, removal of redundant array index out of bounds

check, splitting of accumulator for reduction. It also supports

expansion of scalars and constants. In the algorithm proposed,

parallel instruction groups are found, extended and combined

together. The evaluation showed that the vectorizer provides

speedups which are close to SSE4 instruction set.[6]

Serge Guelton et. al. presented the Pythran compiler, a

translator and an optimizer for a portion of Python language.

Pythran converts the static python modules into C++ code with

parameters. It supports high level python constructs such as list,

map, dictionary, lambda functions, polymorphic functions and

nested functions. It does not support dynamic feature and

classes. Pythran provides Python-centric code optimization

unlike existing static python compilers. Pythran provides API

similar to python standard library as it makes use of C++ library

which uses template programming. The static Pythran compiler

has a front-end where python code is converted to internal

representation, a middle-end where the internal representation

is optimized, and a back-end where internal representation is

converted into C++ code. Pythran takes the advantage of

multiple cores. Using Pythran, high level language code can be

run at descent speed [7].

Wim TLP Lavrijsen in his paper speaks about optimizing the

ROOT I/O in python using PyPy’s tracing JIT. PyPy aims at

providing a support framework for producing dynamic

language implementation and emphasizes on clear separation

between aspects of implementation and language specification.

PyPy’s tracing JIT compiles the high level python code to

machine code at native speeds. The cppyy project provided C++

bindings to PyPy. It also kept the code transparent to JIT while

providing bindings. By applying these cppyy techniques to

ROOT I/O of python, there was a performance gain of 20x

times over CPython was gained. However, it still is 2.7x times

slower compared to C++ [8].

Serge Guelton in his paper introduces principles of Pythran

which is an ahead-of-time compiler for scientific python.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

596

Backward compatibility, type agnosticism, high level and pure

native are the core principles around which Pythran is built.

Pythran easily generates hundred percent native functions from

code written in python and puts it into a PyCapsule rather than

generating an extra conversion layer. PyCapsule is a simple

PyObject that was introduced in Python C API. Pythran

provides concurrency support by releasing the Global

Interpreter Lock after converting Python objects to Pythran

objects as there would be no more interaction with Python C

API. Pythran helps pass the native or interpreted boundary and

hence provides significant speedups without changing the

original code [9].

 This paper by Derek Lockhart primarily focuses on using

Instruction Set Simulator (ISS) to achieve a balance between

high productivity and performance levels. The ISS must be

generated from Architectural Description of Languages (ADLs)

promoting the fundamental concept of decimal to binary

translation (DBT) techniques. To achieve this, the concept of

Pydgin is used where-in directly executable pseudo codes are

generated using meta-tracing of JIT compilers. To reduce the

complexity of interpreter codebases, meta–tracing annotation is

used to simplify the design of dynamic languages. This is

achieved using the module RPython which provides instruction

semantics and a modular instruction interpreter which follows

the mechanism of a translation toolchain. The bytecode

generated can be obtained from various phases and once the

loop is finished, the control returns to the jit_merge_point.[10]

 This paper by Berkin Ilbeyi elucidates on increasing the

productivity and performance of dynamic programming

languages thereby motivating the need for just in time

compilation (JIT). However, while developing JIT optimization

VM’s consumes a lot of time and effort. Using JIT frameworks,

abstraction of language definitions seems to be the best possible

option. A new cross layer methodology is proposed between 2

frameworks to characterize a variety of standards at the

application level. Interpreted code is generally 10x magnitude

times slower that statically compiled code, so using JIT at

runtime optimizes the bytecode fetch and decode overhead.

RPython as a framework identifies hot target loops and the

generates a trace to go about solving the loop. This can be used

a fundamental premise to describe a recent branched-layer

characterization methodology that enables inserting branched

layer annotations at an upper layer and then explicate this at a

lower level [11].

This paper by Juan. G. Galvez and 2 others comments on the

extremely challenging task of parallel programming. Although

several mannerisms are deployed to reduce the complexity, they

have still remained unused for several reasons. Here, a new

model is proposed namely ChamPy which is primarily

modelled using the dynamic approach of Python. The salient

characteristics include an intelligible model and API, better

pliability and obviously the programming power of the Python

language. This is a complex model-driven archetype of

distributed relocatable objects. It reaps gains from several

modern language features and it can run asynchronous

concurrent jobs. Molecular dynamics mini apps can also be

written using the same. Numba JIT compilation is an additional

feature to this model. It is easy to absorb as it is an introductory

level programming language. Keeping, High Performance

Computing (HPC) in mind, message parsing as the de facto

standard is replaced with a distributed computing framework.

CharmPy uses the archetype of diffused, and varied relocatable

objects with nonsynchronous distant procedure citation which

is mentioned using the concept of objects keeping in mind the

interlinkage among the same [12].

 The work presented in this paper by Mihai Bucurica is

focused on the realm of furtherance of computational

orderliness of a finite state automation using the concept of

cellular technology in a simulated virtual based setup. This is

achieved using the 3 fundamental pillars i.e. Java, Python and

Python with an additional package of Numba with Just in Time

Compilation (JIT). The third option was considered to ramp up

the speed of the application to ensure completion and fulfilment

by dispatching it using the beauty of Python. The package

Numba generated useful and efficient machine code with

minimal complexity by running it on the LLVM compiler

framework. It also extends its support to compilation of code on

any kind of a processing unit and is developed in a manner to

correlate and combine the technical aspects as well. This is

implemented to specify and cater to the needs of platform-

neutrality, not swaying to the specifications of the various

components. It was also observed that the overall

administrations in total, are superior to those obtained by using

other programming practices. This was done by improving the

copy_matrix function. This ensures nominal average

programming time of several different sections, typically on

cheaper environments. In total, the all-inclusive time

complexity associated with Numba through JIT compilation

superseded that of an average Python code [13].

 This paper talks about how essential Python language is in

the field of performance resulting in higher throughput and

computerization of scientific aspects. It touches on how the

language can be broadened by using one of several domains.

The domains mentioned are Numpy, SciPy, PyPy, Cython and

Numexpr, resulting in expanding the versatility of the language.

A multitude of methods have been presented in a concise

manner which can be referred to thereby promoting the speed

and optimality of the same. The modularity is also explained,

resulting in top-notch code thereby, being of great significance

as well. It makes it clear how this is a notch above the standard

programming practices as it is definitely a class apart from the

rest in terms of efficiency obtained. This can be achieved using

Numba as a single entity or alongside JIT with the vectorization

feature also [14].

3. Discussion

The effortless nature of Python is indispensable and is what

draws several users to explore and use it with utmost ease. This

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

597

being the case, Python offers an abundance of features in terms

of its packages and frameworks. Some of the significant ones,

that stand out much higher than the rest are:

The effortless nature of Python is indispensable and is what

draws several users to explore and use it with utmost ease. This

being the case, Python offers an abundance of features in terms

of its packages and frameworks. Some of the significant ones,

that stand out much higher than the rest are:

 PyPy – This is a unique framework-based environment

that Python offers to bring about code that is optimal

in all measures. With that being said, it uses the

concept of compilation in the nick of the time. This

results in code being immediately translated into its

equivalent machine type. Scripts that are developed

using this strategy are very storage-efficient as it

hardly takes up significant memory. The simultaneous

execution as a process becomes relatively easier,

making it rapid, speedy and well-ordered. The rate of

program execution is significantly faster, yielding

better results;

 Numba – This is a wonderful aggregate of the two

most commonly used approaches in our day-to-day

programming interfaces namely NumPy and Just in

Time (JIT) compilation mechanism. It was brought

into existence keeping in mind all the usual coders

who dealt with quantitative and data-structure directed

processing units. It is an open source platform that can

be easily accessed, used by one and all making it user-

friendly and easy to work with. It is the

conglomeration of a variety of bundles that can be

used from something like a small-scale application to

larger applications including distributed computing

and data warehouses. It focuses on the concept of data

analytics and varied sciences;

 CharmPy – This is a relatively new concept that was

introduced to bring about betterment of the existing

Python language by additionally boosting it with the

Charm framework. It focuses on running many jobs

that are anachronic in nature thereby bringing about

faster execution rates. This works in association with

the Numba package combining Just in Time (JIT)

compilation to literally achieve the best of both

worlds. It is object oriented in the sense that it

concentrates primarily on the adducing of objects. The

key aspect to be kept in mind here, is the processing

element (PE) that sustains inter and intra class

similarity. It also provides the added benefit of

addition and deletion of objects without structurally

damaging the infrastructure of the framework;

 Pythran - Pythran, an ahead-of-time compiler was

developed for scientific python. It provided significant

speedups over high-level Numpy implementation

thereby relieving the scientists from the burden of

using lower-level languages for scientific computing.

Pythran converts the static python modules into C++

code with parameters. It supports high level python

constructs such as list, map, dictionary, lambda

functions, polymorphic functions and nested functions

but unfortunately it does not support dynamic features

and classes. Pythran provides Python-centric code

optimization unlike existing static python compilers.

Pythran outperformed Cython by supporting

backward compatibility, type agnosticism and high

level which weren’t supported by Cython;

 Pydgin –This is the backbone of modern programming

use case where-in a Python powered DSL is used to

conjure Instruction Set Simulators. It follows a

systematic procedure of encoding the rules based on

semantics obtained and running it through a finite

loop, delivering an annotation-based tree and

parallelly a refined script. This is a first-class

executable that can be spawned across several

interpreter-based contexts and over suitable

frameworks as well.

As Python began to be used more and more across diverse

sectors, certain shortcomings were noticed, primarily, the low

computation speed. Two methods were developed to overcome

this issue, one was that of increasing the speed of interpreters,

and the other was the optimization of Just-In-Time (JIT)

compilers. The latter can be done by using parallel discrete

event simulation engines, message passing interfaces (MPIs),

tuning configuration parameters so as to provide the best

performance, enabling complete utilization of hardware

accelerators like GPUs and TPUs, or by developing JITs which

are directed at a specific application.

The distribution of discrete events across computers is called

parallel discrete event simulation (PDES); it incurs lesser

overhead in terms of time and memory than serial event

simulation. Simian is one such PDES engine that performs

jitting on the codes of interpreted languages. Python packages

like NumPy have features like vectorized arrays, which, if used

judiciously, can speed up computation. Cython is a superset of

the Python language and JIT-compiles Python code into faster

C code. When the JIT tool, PyPy JIT Tuner was used to

automatically tune the configuration features and compile

PyPy, a popular implementation of Python, its average peak

performance increased up to 60%. Finally, Python JIT

compilers like HOPE are designed for specific applications, in

this case, astrophysics and cosmology. By using a subset of the

Python numerical expressions and compiling the code on-the-

fly, HOPE has managed to raise the speed of Python.

Loop execution is one of the major reasons behind simple

python codes taking lot of execution time as compared codes

written in native languages like C/C++. To overcome this

problem, Tracing Just-In-Time compilers were developed for

the optimization of hot loops. Efficient heuristics were used in

new vectorization methods which resulted in less overhead as

compared to traditional vectorization methods and resulted in

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

598

speedups which were close to SSE4 instruction set. The

working of a JIT model can be explained with respect to 4

different phases namely the inference phase, optimization

phase, code generation phase and finally the control returns to

an arbitrary point defined in the start-up routine namely the JIT

merge point.

4. Conclusion

A detailed examination of the research work based on

optimizing the Python language has shown that the problems

once faced due to higher execution time of Python codes as

compared to its native C/C++ codes is now tackled by using

Python Just-In-Time compilers like Numba, Pydgin, RPython,

Cython, Pythran and HOPE. Daunting problems that were

terribly significant such as loop execution, parallelism, ROOT

I/O can now be easily conquered using Just-In-Time compilers.

The wide range of approaches and optimization techniques

resulted in significant speedups which relieved the burden of

using lower-level languages for scientific computing. This

survey paper is drafted to provide a comprehensive summary of

all revolutionary tried and tested approaches which aim to

tackle the low speed of the Python language. Most of these

methods deal with enhancing Just-In-Time (JIT) compilers

which compile the interpreted Python codes instantly and

immediately thereby reaping the best benefits of the same. The

survey paper deals with all the Python frameworks, modules,

packages that have increased the compilation mechanism

speeds thereby proving to deliver fruitful results in the fields of

High-Performance Computing and Parallel Processing. We

have strived our best to propose an all-inclusive python related

JIT compiler that touch upon each and every nook and corner

of this particular domain. We aim to assist researchers and help

them with their subsequent work by comparing their proposed

methodologies with the existing ones that have been studied in

our survey.

References

[1] Hannon, Christopher, Dong Jin, Nandakishore Santhi, Stephan

Eidenbenz, and Jason Liu. "Just-in-time parallel simulation." In 2018

Winter Simulation Conference (WSC), pp. 640-651. IEEE, 2018.

[2] Morra, Gabriele. "Fast Python: NumPy and Cython." In Pythonic

Geodynamics, pp. 35-60. Springer, Cham, 2018.

[3] Yangguang Li, Zhen Ming (Jack) Jiang, “Assessing and optimizing the

performance impact of the just-in-time configuration parameters - a case

study on PyPy”, Springer Science+Business Media, LLC, Springer

Nature 2019.

[4] Jain, Paras, Xiangxi Mo, Ajay Jain, Alexey Tumanov, Joseph E.

Gonzalez, and Ion Stoica. "The OoO VLIW JIT Compiler for GPU

Inference." 2019.

[5] Akeret, Joël, Lukas Gamper, Adam Amara, and Alexandre Refregier.

"HOPE: A Python just-in-time compiler for astrophysical computations."

Astronomy and Computing 10 (2015): 1-8.

[6] Plangger, Richard, and Andreas Krall. "Vectorization in PyPy's Tracing

Just-In-Time Compiler." In Proceedings of the 19th International

Workshop on Software and Compilers for Embedded Systems, pp. 67-76.

ACM, 2016.

[7] Guelton, Serge, Pierrick Brunet, Mehdi Amini, Adrien Merlini, Xavier

Corbillon, and Alan Raynaud. "Pythran: Enabling static optimization of

scientific python programs." Computational Science & Discovery 8, no.

1 (2015): 014001.

[8] Lavrijsen, Wim TLP. "Optimizing python-based ROOT I/O with PyPy's

tracing just-in-time compiler." In Journal of Physics: Conference Series,

vol. 396, no. 5, p. 052046. IOP Publishing, 2012.

[9] Serge, Guelton. "Pythran: Crossing the Python Frontier." Computing in

Science & Engineering 20, no. 2 (2018): 83.

[10] J. Diaz-Montes, C. Muñoz Caro, A. Niño, "A Survey of Parallel

Programming Models and Tools in the Multi and Many-Core Era", IEEE

Transactions on Parallel and Distributed Systems, vol. 23, pp. 1369-1386,

2012.

[11] B. Chamberlain, D. Callahan, H. Zima, "Parallel Programmability and the

Chapel Language", The International Journal of High Performance

Computing Applications, vol. 21, no. 3, pp. 291-312, 2007.

[12] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, D. Fey, "HPX: A

Task Based Programming Model in a Global Address Space",

Proceedings of the 8th International Conference on Partitioned Global

Address Space Programming Models, 2014.

[13] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M.

Robson, Y. Sun, E. Totoni, L. Wesolowski, L. Kale, "Parallel

Programming with Migratable Objects: Charm++ in Practice", ser. SC,

2014.

[14] C. F. Bolz, Meta-Tracing Just-In-Time Compilation for RPython, 2012.

