
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

564

Abstract: Desktop data search is an important feature for any

desktop and is essentially required too. For searching any big data

the systems are required to have the search algorithms in order to

access the hard disks and the connected storage spaces, sometimes

it may get difficult to find the data manually by simply scanning

the visible strings, that where the search algorithms comes handy.

Search algorithms can be inspired from many technologies but

they are needed to be very specific about the task and precise too.

Keywords: Tree Algorithm, Indexer, Searcher, Folder

Accession.

1. Introduction

Desktop search algorithm is an important tool for the current

scenario based system, the large data are occupying spaces and

are required to get access continuously for these type of

function the system requires Desktop Data Search Algorithm.

Many tasks require a programmer to organize data in

collections and perform different operations on these

collections. Moreover, the collections and the operations must

often be designed in a way that guarantees certain parameters

of program execution, for example speed and memory

consumption. Because working with data collections or sets is

so frequently encountered exercise, a number of attempts has

been made to standardize these exercises and, thus, reduce the

time and effort of their implementation. For this reasons many

standard data structures and algorithms appeared. Using these

well-defined data structures and algorithms programmers can

quickly and efficiently solve various tasks.

One of the standard data structures that has been widely used

in programming is the tree data structure. Tree structure means

a “branching” relationship between nodes (Knuth, 1973) and

imposes a hierarchical structure on the collection of items.

There are many types of trees: binary trees, balanced trees, 2-

3trees, B-trees, red-black trees, Fibonacci trees, AVL trees to

name just a few. Each type of the tree data structure has been

designed to support a specific set of properties essential in a

given situation.

Tree structures are the most important nonlinear structures

that arise in computer algorithms (Knuth, 1973). Trees have

numerous applications. They are used to analyze electrical

circuits, to represent the structure of mathematical formulas, to

organize information in database systems, to present the

syntactic structure of source programs in compilers and many

others (Aho et al., 1983). Data that is stored in the memory

needs to be retrieved. Now, various techniques exist, which can

be used to search and retrieve a required element from the data

set. The most widely known algorithms used for searching for

an element in a given array are Linear Search and Binary

Search.

 Linear Search: The simplest method of finding out an

element from an array would be to visit each element in the

dataset sequentially, compare the element with the key

element required, and then return the result as found/ not

found along with the position if found. This method

describes the Linear Search algorithm. Linear Search is also

called as Sequential Search.

 Binary Search: For an array to be sorted by Binary Search,

first and fore mostly it is necessary that the array to be

searched is sorted in the ascending order. Once this

constraint is satisfied, in order to search for the key value,

the algorithm makes use of 3 variables l, r and m which stand

for left, right and middle and represent the position of the

elements in consideration, and then the key value is

compared with the element in the middle of the array. If both

the values do not match, then the array is divided into 2

parts, in both of which the middle value is compared to the

key value, and if found, the index is returned. If not, this

process continues till the required key value is obtained in

the array. If the key is not present in the array, a message

saying ‘element’ not present is displayed to the user. Each

method has its own problems. Linear search requires a large

amount of time for searching, especially if the element is

towards the end or in middle of a large data set. Binary

search requires data to be stored which takes large time.

2. Literature review

In this section, we will introduce in detail the existing

indexing and nearest neighbor (NN) searching algorithm in the

literature. As it is a widely studied area and many algorithms

have been proposed, we only concentrate on the algorithms

suitable to large-scale high-dimensional database. For more

information on NN searching area, the survey paper will be

recommended [1].

Generally, the existing NN search algorithms in large-scale

Desktop Data Search for Big Data using

Classifier and Indexer Technique

Harshita Shukla1, Vinod Todwal2

1Student, Department of information Technology, Rajasthan College of Engineering for Women, Jaipur, India
2Assistant Professor, Dept. of information Technology, Rajasthan College of Engg. for Women, Jaipur, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

565

high-dimensional database can be classified into three

categories based on the ways to index data: algorithms based on

hierarchical partitioning trees, algorithms based on clustering

methods and algorithms based on hash methods [2].

The most representative technique in hierarchical

partitioning tree is perhaps the k-d tree. However, as mentioned

above, the performance of k-d tree will rapidly decrease with

the increase of the dimensions. To alleviate the decrease

performance, researchers propose approximate nearest

neighbor (ANN) search, and perform limited backtracking steps

ordering by the distances between the query point and

backtracking nodes. The backtracking process will be stopped

if it satisfies a “error-bound” condition or a “time bound”

condition [4].

To improve the performance of above k-d structure, Silpa-

Anan and Hartley [6] present multiple randomized k-d trees.

These randomized k-d trees are built in parallel by randomly

selecting some top dimensions with highest variances as split

hyperplanes. Compared to the traditional “error-bound” or”

time bound” k-d tree, multiple randomized k-d trees will

probably obtain higher performance in accuracy and efficiency.

Muja and Lowe [2] examine the randomized k-d trees data

structure and evaluate it with more exhaustive tests. Their

implementation has been incorporated into OpenCV and is now

considered as one of the state-of-art nearest neighbor matching

algorithms.

Some other algorithms focus on how to find a more optimal

split hyperplane or hypersphere rather than randomly selecting

the split hyperplane, such as the principal component trees

(PCA-trees) [10], the random projection trees (RP-trees) [11]

and the improved PCA-trees [12]. They report that their optimal

splitting methods will improve the overall performance

compared to the classic k-d trees.

Actually, the more adaptive and optimal splitting way is the

clustering on the data, which can further reduce the partitioning

error. Thus, there are also many NN searching algorithms based

on various clustering methods, such as Kmeans trees [13],

vantage point trees (VP-trees) [14], cover trees [15],

agglomerative clustering trees [6], etc.

Fukunaga and Narendra [16] present the hierarchical K-

means tree that clusters data points into K disjoint groups by K-

means algorithm, and then recursively performs the same

operation on each group until the size of all the groups lower

than a given threshold. In query process, a large number of

neighbor clusters must be retrieved to maintain high

performance as the tree only be traversed once without any

backtracking. To alleviate it, Muja and Lowe [2] present to

explore the k-means tree by a best-bin-first strategy, which is

proved to be a more effective in improving the overall

performance.

Performing NN search by product quantization (PQ)

approach is another recent research focus. Jegou et al. propose

constructing a quantizer of the high-dimensional space as a

Cartesian product of lower dimensionality quantizers, called

product quantization [17]. Points are represented by the short

code composed of the quantization indices of its subparts.

Owing to this representation, the query process can be

efficiently performed by a look-up table technique. The PQ

variants and its improvements include optimized product

quantization [18], additive quantization [19], stacked

quantization [20] and so on. However, these methods are

always implemented in a single machine, which is not suitable

to large-scale database.

To perform NN search in high-dimensional data, especially

when the dimension is relatively high, a well-known choice is

utilizing hash methods which can alleviate the “curse of

dimensionality” problem. Among these hash methods, local

sensitive hash (LSH) perhaps is the most frequently used [21].

LSH uses a large number of hash functions, which hash nearby

points in the original metric space into same buckets with high

probability. The query point will take the points located in

buckets as NN neighbor candidates.

It is obvious that the LSH index is a kind of flat index. So,

LSH must maintain a large number of hash functions to

improve the matching performance including both the accuracy

and recall rate. The multi-probe LSH approach [7] is proposed

to reduce the LSH storage cost by querying the adjacent hash

bucket. The amount of the hash functions is reduced by an order

of magnitude. To further increase the performance of LSH,

Bawa et al. proposed LSH forests which is better adaptive to

data and has been successfully applied in text retrieval area [8].

In the case of distributed LSH, Panigrahy proposes Entropy

LSH method [22] to significantly reduces the number of

required hash tables. To maintain the overall performance, a

large number of query offsets must be generated and hashed in

the buckets to find new candidates. It will obviously increase

the network cost and limit the application of Entropy LSH in

the distributed environment. To overcome it, Bahmani et al.

proposed a scalable layered LSH [23] that distributed the

adjacent hash bucket to the same computing node. They prove

that the layered LSH exponentially decreases the network cost,

while maintaining a good load balance between different

computing nodes. They also give an implementation of the

layered LSH on Hadoop parallel framework.

3. Proposed work

Define Database function calls a directory provided by the

operating system and registers down the content of it. Content

may contain files, folders and sometimes system files as well.

The hierarchy can be complicated and may require multiple

recursions for registering the content. By stating the keyword

hierarchy, it is meant to be understood that a root folder will

contain subdirectories and those subdirectories will definitely

have separate content of files and folders.

In this algorithm the defined database function registers

down every file and folder sequentially with their original

locations and keeps updating the newly added files and folders.

This maintains a record of the stored files and folders.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

566

MATLAB uses “dir” function to update the list or the database

generated by the defined database function. “dir” functions

provides various information about the content of the current

directory such name, folder name, date, size, directory status

and the serial date number for the mathematical calculations.

Validation function checks the user’s integrity and only allows

the users those are registered or who have the login credentials.

Search algorithm: The algorithm works over various

connected files or scripts, and is basically of type Indexer

algorithm where the data gets stored and then it is to fetched for

searching. Benefits of defining database is it takes less time to

search the data as access folder by folder and the sub folders

and then looking up for the files will take extra amount of time

and will return the data one by one which is a longer process,

however the process followed by the proposed algorithm is

entirely different from the other search algorithms implemented

by the operating systems. Proposed algorithm works over the

root to tip Tree algorithm where the searcher or the indexer

moves from branch to branch to register down the content and

then form the database in the same tree hierarchy. Tree

algorithm save a lot of simulation time when implemented

through the data register process as searching out the data out

of the string is always going to be a swift operation in

comparison to the accessing the folder.

4. Results

The proposed algorithm has been tested over thousands of

files and has produced results on time with respect to string

length.

The above presented table represents the timing and the

string length comparison for different type of file search and

folder search.

Fig. 1. Google search result time display

5. Conclusion

The above presented work shows that the data searching in

the desktop is tricky and complicated too, but with the help of

database functionality and the use of tree search algorithm in

the same can help in reducing the timing for the searching of

data. The average timing results for searching data shown by

the google and the yahoo search engines is around 0.43 seconds.

Which can get reduced if the database intellectuality is

introduced into the searching algorithms.

References

[1] J. Wang, W. Liu, S. Kumar, S. F. Chang, learning to hash for indexing big

data-a survey, Proceedings of the IEEE 104 (1) (2016) 34–57.

[2] M. Muja, D. G. Lowe, Scalable nearest neighbor algorithms for high

dimensional data, IEEE Transactions on Pattern Analysis and Machine

Intelligence 36 (11) (2014) 2227–2240.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Y. Wu, An

optimal algorithm for approximate nearest neighbor searching fixed

dimensions, J. ACM 45 (6) (1998) 891–923.

[4] C. Silpa-Anan, R. Hartley, Optimised kd-trees for fast image descriptor

matching, in: 2008 IEEE Conference on Computer Vision and Pattern

Recognition, 2008, pp. 1–8.

[5] R. F. Sproull, Refinements to nearest-neighbor searching ink-dimensional

trees, Algorithmica 6 (1) (1991) 579–589.

[6] S. Dasgupta, Y. Freund, Random projection trees and low dimensional

manifolds, in: Proceedings of the Fortieth Annual ACM Symposium on

Theory of Computing, STOC ’08, ACM, New York, NY, USA, 2008, pp.

537–546.

[7] Y. Jia, J. Wang, G. Zeng, H. Zha, X. S. Hua, Optimizing kd-trees for

scalable visual descriptor indexing, in: 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2010, pp.

3392–3399.

[8] D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in:

2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06), Vol. 2, 2006, pp. 2161–2168.

[9] P. N. Yianilos, Data structures and algorithms for nearest neighbor search

in general metric spaces, in: Proceedings of the Fourth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA ’93, Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 1993, pp.

311–321.

[10] A. Beygelzimer, S. Kakade, J. Langford, Cover trees for nearest neighbor,

in: Proceedings of the 23rd International Conference on Machine

Learning, ICML ’06, ACM, New York, NY, USA, 2006, pp. 97–104.

[11] K. Fukunaga, P. M. Narendra, A branch and bound algorithm for

computing k-nearest neighbors, IEEE Transactions on Computers C24 (7)

(1975) 750–753.

[12] H. Jegou, M. Douze, C. Schmid, Product quantization for nearest

neighbor search, IEEE Transactions on Pattern Analysis and Machine

Intelligence 33 (1) (2011) 117–128.

[13] T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization for

approximate nearest neighbor search, in: 2013 IEEE Conference on

Computer Vision and Pattern Recognition, 2013, pp. 2946–2953.

[14] A. Babenko, V. Lempitsky, Additive quantization for extreme vector

compression, in: 2014 IEEE Conference on Computer Vision and Pattern

Recognition, 2014, pp. 931–938.

[15] J. Martinez, H. H. Hoos, J. J. Little, Stacked quantizers for compositional

vector compression, CoRR.

[16] A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions, Commun. ACM 51 (1) (2008) 117–

122.

[17] Q. Lv, W. Josephson, Z. Wang, M. Charikar, K. Li, Multi-probe lsh:

Efficient indexing for high-dimensional similarity search, in: Proceedings

of the 33rd International Conference on Very Large Data Bases, VLDB

’07, VLDB Endowment, 2007, pp. 950–961.

[18] M. Bawa, T. Condie, P. Ganesan, Lsh forest: Self-tuning indexes for

similarity search, in: Proceedings of the 14th International Conference on

World Wide Web, WWW ’05, ACM, New York, NY, USA, 2005, pp.

651–660.

[19] R. Panigrahy, Entropy based nearest neighbor search in high dimensions,

in: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on

Table 1

Timing and String Length Comparison

File Type Number of

Files/Folders

String Length

(Average)

Time

Excel Files 450 12 0.0261

Folders 406 6.88 0.0234

Bmp Files 357 10.94 0.0234

JPG Files 191 10.87 0.0221

Png Files 499 10.90 0.0269

Word docx Files 176 11.64 0.0254

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

567

Discrete Algorithm, SODA ’06, Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2006, pp. 1186–1195.

[20] B. Bahmani, A. Goel, R. Shinde, Efficient distributed locality sensitive

hashing, in: Proceedings of the 21st ACM International Conference on

Information and Knowledge Management, CIKM ’12, ACM, New York,

NY, USA, 2012, pp. 2174–2178.

