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Abstract: In the recent years, the scale of applications has been 

increasing. Artificial Intelligence is emerging and has been used by 

many researchers in the field of compilers. It can also be used to 

optimize these large-scale applications which require high 

performance for critical tasks. Many existing compilers have 

various options to optimize the code. These can be specified by the 

use of flags but such implementations would vary for each CPU 

architecture. This would demand a lot of time and effort to provide 

compilers for a multitude of microprocessor architectures. A 

significant reduction in development time and effort can be made 

with the use of machine learning models.  This paper explores the 

various methods to implement such compiler optimizations, 

varying from the use of fully-Bayesian generative networks to 

Markov Logic Networks.  Many open source APIs have been used 

in the field of compiler optimization. 

 
Keywords: compiler optimization, artificial intelligence, 

machine learning. 

1. Introduction 

Compilers have been developed since the 1950s and the 

theory behind their construction has not changed much. Besides 

being used for translation of programming languages from one 

form to another, compilers are also used for optimization of the 

source programs. In the recent years, many researchers have 

been looking into the use of AI and machine learning to 

improve the compilation process. As the compiler is a complex 

expert system, and expert systems are a branch of AI, the use of 

AI in optimizing a compiler is justified. Performance critical 

programs have been hand optimized for a speed up from a long 

time but the same has been achieved using ML algorithms 

which look for an optimal solution in large search spaces. This 

paper discusses the previous work of such ML driven compiler 

optimization. There has been such research related to 

optimization in the field of embedded systems, multi-core 

processors and deep learning. There are four sections in the 

paper. In the literature survey section, we discuss the various 

research works related to compiler optimization using AI.  

2. Literature survey 

Braun et al. proposed a formal model which is built with first 

order constructs (i.e. lifted variable elimination for single 

queries as well as First order knowledge compilation based on 

the weighted model counting. AI fields and machine learning  

 

require efficient inference algorithms. Modelling in real world 

scenario yields large probabilistic models. Lifting uses  

symmetries in the model to eliminate variables and increase the 

speed of compilation. First order junction tree is built to handle 

multiple queries efficiently using lifted variable elimination. 

Lifted junction tree is used to build a first order junction tree, 

cluster the model into sub models that contains all the 

information for a query after propagating information. Lifted 

junction tree is very efficient and has linear complexity. All 

operators have pre-post conditions to ensure a result does not 

change highly. The lifted junction tree, lifted variable 

elimination and First order knowledge compilation are fused to 

get efficient models. The fused model increases the efficiency 

as it speeds up the processes [1]. 

Stephenson, M. et al. proposes the meta optimization 

technique which uses the machine learning to automatically 

search the space of compiler heuristics. This technique is used 

to reduce the compiler design complexity by heuristic tuning. 

The proposed system uses genetic algorithm which is an 

evolutionary, adaptive algorithm to find compiler heuristics and 

it is very effective. With this technique disparity is noticed 

among the performance of training set and the cross validation. 

Overfitting on training set occurs in some of the test cases. [2] 

Pan, Z. et al. proposes a fast and effective algorithm called 

Combined Elimination (CE) which is fast and effective 

orchestration of compiler optimizations for automatic 

performance tuning. Optimization of compile time improves 

the program performance and degradations. The solution is to 

develop dynamic, feedback-directed optimization orchestration 

algorithms to achieve the best program performance by 

automatically searching for the combination of optimization 

techniques. But the challenge is developing an orchestration 

algorithm with minimal time complexity. Some of the 

Orchestration algorithms are  

 Exhaustive Search 

 Batch Elimination 

 Iterative Elimination 

 Combined Elimination 

 Optimization Space Exploration 

 Statistical Selection 

With an aim to find an optimal point in a high definition 

space S = F1×F2×...×Fn. Two metrics they have used for 
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algorithm comparison are performance and tuning time. With 

the help of this they proposed a new compiler optimized 

algorithm called combined elimination. It optimizes the 

program automatically with a high dynamic tuning 

performance. [3] 

Patel J. et al. proposes Code Optimization in Compilers using 

ANN. Here they developed a system which selects the best 

optimization orderings automatically on a per method basis by 

including profiles of programs within a dynamic compiler. 

Optimization techniques are mainly classified into machine 

dependent and machine independent. In machine independent 

we are not considering compilers and CPU attributes but we 

consider in machine dependent. 

Some of the optimization techniques reviewed in this paper 

are 

 Code motion 

 Reduce in strength 

 Loop unrolling 

 Instruction level parallelism 

The proposed method is to implement 4Cast-XL which is 

dynamic compiler. It constructs ANN and integrates into Jikes 

RVM optimization driver and then at the task of phase-ordering 

optimizations ANN is evaluated. Finally, below steps are 

performed repeatedly.   

 Generating a feature vector for a current method’s 

state  

 Generating a profiles of the program 

 Predict the best optimization to apply by using ANN.  

Now run the benchmarks obtain feedback for 4Cast-XL and 

record execution time for each. Finally, speedup is obtained by 

normalizing the obtained time for each benchmarks. Results of 

the experiments show that the obtained profiles of the program 

can be used for code optimization. [4] 

Dubach, C. et al. describe a machine learning driven 

approach to optimize a portable compiler. The paper proposes 

an adaptive compiler which tunes itself to an ever-changing 

microarchitecture. Each program would be optimized for a 

specific generation of microprocessor by the compiler. They 

generate the training data for the model using the sets of 

optimization passes and previous program/microarchitecture 

pairs. These pairs comprise 11 performance counters, 

Arithmetic Logic Unit, Multiplier-ACcumulator and Shifter 

usage, IPC, Decoder, Register file, Branch prediction access 

rates and Instruction cache and Data cache access and miss 

rates. The ML problem stated is finding the best model which 

outputs a mapping from the training data to a set of optimal 

optimization passes. They use the embedded benchmark suite, 

MiBench to evaluate their model on 35 programs. There is 

considerable improvement by using the proposed ML model 

over the gcc -O3 flag. [5] 

Singh et al. proposed an idea on the possible relational 

database errors, as majority of scientific and commercial data is 

stored in the relational database. Database may have errors, and 

error checking, finding missing values in database becomes 

necessary. User needs to specify all the probabilistic 

dependencies in the data. Relational database schemata are 

viewed as programs that describes the probabilistic 

dependencies that exists in the data. The model construction for 

the domain experts is done to simplify the task. Using the 

schema given a customized fully-Bayesian generative graphical 

model is generated. A Bayesian graphical model is created and 

one can perform inference on it. Single table A is constructed 

with attributes xA. The distribution is generated using the type 

of attribute. Gaussian is for real-valued, discrete for categorical, 

and Bernoulli for Bool values. Foreign Component links are 

generated for element xA to fiB if there are foreign key 

attributes and the model built is used to detect the uncertainty 

of the foreign keys, missing values in the database. Various 

experiments are performed on the User-Movie-Rating database, 

on which the join operation is performed over all the tables. As 

the result all the dependencies will be lost. By treating the 

proportion of the cells as missing synthetic data is created. It 

was found that Bayesian model allows to identify the missing 

values, detect outliers, visualize clustering, etc. effectively [6]. 

Flores et al. proposed an idea for incremental compilation of 

the Bayesian networks. Secondary structure called junction tree 

is built to carry out inference on probability propagation in 

Bayesian networks. In Incremental compilation, only those 

parts of the joint tree are recompiled which might have been 

affected by the network’s modification. A technique called as 

Maximal prime subgraph decomposition is used to determine 

the minimal subgraphs that is to recompiled and thereby be 

replaced with new subtrees. As incremental compilation is 

used, the time consumed is very much high. Other than this 

incremental compilation is very efficient than actual 

compilation. The main aim is to build the join tree (junction 

tree) avoiding triangulation. Incremental compilation identifies 

the parts of the joint tree that are affected by the Bayesian 

networks, and adds new sub structures into the original join 

tree. Various issues of incremental compilation were found to 

be adding an arc, removing an arc, adding a node, removing 

node. Using MSP the join tree affected mostly by the Bayesian 

network is identified and recompiled, and this algorithm also 

makes sure there is no triangulation. This method saves time 

when Bayesian network changes frequently [7]. 

Casado, M.L. et al. proposes the improvisation of inference 

compilation for probabilistic programming in scientific 

simulators. They have considered Bayesian inference problem 

in the probabilistic model family. They are working on 

inference compilation which makes use of universal 

probabilistic programming and deep learning methods. They 

have also introduced the probabilistic programming library 

based on C++ called CPProb. CPProb is developed to boost the 

large scale simulation code along with inference compilation 

which is probabilistic programming library written in C++. It 

exports mainly three functions: sample, observe and predict. 

The algorithm used is importance sampling in conjunction with 

inference compilation. This work is a first step to implement a 
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probabilistic programming approach in a physical science 

which helps in simulation methods [8]. 

Hershey et al. proposed an idea to unify a number of models 

from machine learning, statistical text processing, vision, 

bioinformatics by using probabilistic graphical models. Usually 

the models have large dimensionalities. Efficiency can be 

increased by dividing the problem into series of logically 

independent components. Modularity helps to divide the code. 

Dimple is an open source API. This API uses modular 

architecture to make development of new inference. Dimple 

architecture is very easy for anyone to add new inference, it 

serves as front-end and compiler for hardware inferences. 

Another way of increasing the speed is to avoid the loop. 

Dimple avoids this looping as it has ability to create a large n-

dimensional collections of variables as well large number of 

factors without loops. GP5 is one of the optimized to accelerate 

inference on graphs with large factor tables [9].  

Radovilsky et. al. proposed an idea to develop the 

approximation algorithms for selection of optimal set of 

measurements under the dependency structure modeled by 

Bayesian Networks (tree-shaped). As there are two diagnostic 

systems, tests and hypothesis with the statistical dependencies 

with among the variables. The main aim of the paper [10] is to 

optimize the objective function, which is a tough problem in the 

general cases. Observation subset selection is the restricted 

version of the problem, as all the measurements must be 

selected in advanced. Various methods for to tackle these 

problems have been proposed. Quality of the result can be 

predicted by measuring the amount of allocated time. A 

statistical model called performance profile can be employed 

for this prediction. Algorithms are proposed to compute the 

generalized local compilation, oss in Bayesian networks. In this 

paper the concept of CPP is extended and presented an efficient 

technique for the compilation of the composite system [10]. 

As we know that compilers are used for converting code from 

high level language to machine readable format. Whereas 

machine learning is used for some sort of prediction. As 

compiler provides optimized solution among the many. But the 

job of finding optimal solution is very difficult. Machine 

learning can provide best outcome through prediction. Zheng 

Wang et al. proposed a method in which feature of Machine 

Learning can be used for optimizing compiler. This may helpful 

for the compiler to gain high performance. First we create a 

training model which consists of the different programming 

applications. Then for each training program we find the feature 

values and we try to compile the training programs through 

different optimization possibilities, then we store the best 

compiler optimized option as well. Then we try to use this 

whole training set with the machine learning algorithm which 

will result in creation of a model [11]. 

This model can be further used for finding best optimization 

option for the compiler which will increase the compiler’s 

performance. In this manner combining of compiler 

optimization with machine learning will help in getting the best 

optimized option. 

Hugh Leather et al. have examined the state of the compiler 

at the beginning. This result has the structure of our program 

code i.e. AST (Abstract Syntax Tree) and the steps of 

compilation. After the above step we use some ML tools to set 

the vectors such as number of branch counts in our program, 

loop levels, etc. All these terms are known as FEATURES. 

Then the compiler runs each and every computer program to 

generate a training set and stores the features for each 

Benchmark (executing program). This technique does the 

execution of computer programs iteratively to get the best 

Feature values. Then the compiler transfers all the computer 

programs set along with the best features value to the Machine 

Learning tool which will construct a model. Then the new 

benchmarks are tested against this model to get the best 

Compiler optimization results. In this way the Machine 

learning’s best prediction is used for utilizing the best compiler 

optimization results. This further result in high performance 

compiler [12].  

The goal is to use machine learning which has the ability to 

decrease number of executions. Grigori Fursin et al. proposed a 

method in which the compiler learns by itself to optimize 

computer applications/programs/benchmarks. In this project we 

are working with the GCC compiler, which is open source. This 

compiler has more advantageous features in terms of 

optimization when compared to other compiler. This method 

goes through 2 stages: one is Training of dataset and other is the 

Deployment in which the testing benchmarks/executable 

computer programs are compiled with GCC compiler. In the 

Training stage, gathering of different computer programs will 

be done along with the program structures like AST. Accuracy 

of building best model will be proportional to the number of 

benchmarks we gather along with the program structure 

information. To generate training examples, we use a tool 

named CCC (Continuous Collective Conformation framework) 

which will be helpful in storing execution time of benchmarks, 

size of the program, etc. Deployment, after collecting the 

sufficient training data a model is constructed using ML 

algorithm. This constructed model will be used for prediction 

of good optimization results of the GCC compiler [13]. 

Choosing the best optimization options for compiler is a 

critical task. Sameer Kulkarni et al. proposes a method to select 

the best optimization phases for separate sections of the same 

program/benchmark rather than applying for the whole 

program. Our approach will determine the best optimization 

phase ordering on a per-method-basis. To do this we use 

Artificial Neural Network (ANN) to predict the optimization 

order. This technique’s training section takes different 

program’s methods and their current state of optimization phase 

as an input and predicts the best optimization phase by changing 

some properties of the method. This technique resolves phase 

ordering problem by taking the benefit of Markov-property 

[14]. 

Ganapathi, Archana et al. presents a machine learning 
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approach to optimize the compilation suitable for multicore 

processors. The authors discuss the drawbacks of using 

autotuning: 1- The size of the parameter space to explore 

(Search spaces with 40 million configurations need about 180 

days to search). 2- Auto-tuners only try to minimize overall 

runtime. These drawbacks are overcome using statistical 

machine learning (SML) algorithms by drawing in inferences 

from automatically constructed models of large quantities of 

data. The authors consider a recent SML algorithm, called 

Kernel Canonical Correlation Analysis (KCCA) to identify the 

relationships between the set of optimization parameters and a 

set of resultant performance metrics to explore the search space. 

They conduct experimental runs to optimize Stencil code on 

Intel Clovertown and AMD Barcelona processors. The paper 

concludes that the KCCA was able to optimize two stencil 

codes on two multicore architectures, upto 18% over the level 

of a human expert [15]. 

Delgrande, James P. et al. describe a system, called PLP, 

which compiles ordered logic programs into standard logic 

programs. It is implemented using the Prolog programming 

language. It is front-end system for the logic programming 

systems dlv and smodels. PLP is an efficient translator as the 

resultant logic programs are polynomial in the size of the input 

program. The output of the logic programs is an answer set. The 

user can use the compiler by writing programs in ordered (or 

set-ordered) logic which will be translated to standard logic 

[16]. 

Agakov, Felix et al. propose a way to speed up the iterative 

compiler optimization using machine learning. The 

methodology uses the source code features to correlate the 

program to be optimized with previous knowledge in order to 

focus the search. The research is centered around embedded 

applications where performance is critical. Previous methods 

are slow as the search space is large and performance 

improvements need a large number of evaluations. The authors 

propose that the search can be sped up using a focused search. 

They conducted their experiments on a TI C6713 (a high-end 

floating-point digital signal processor) and an AMD Alchemy 

Au1500 processor (an embedded SoC processor using MIPS32 

core (Au1)). The ML Search algorithms used to search the 

source-level transformation spaces are a blind random search 

and a “smarter” genetic algorithm. The authors make an 

assumption, using the Independent identically distributed (IID) 

model, that all transformations are mutually independent 

neglecting the effect of interactions among transformations. 

They present a one-off training/learning phase to build a model 

which is then applied to each new program [17]. 

Kazemi, Seyed Mehran et al. answer the two issues: 1- 

Kazemi and Poole (2016) compared end-to-end (compiling to a 

target circuit and reasoning with the circuit) run-times of their 

work with Van den Broeck et al. (2011)’s weighted first-order 

model counting, leaving the question of where exactly the 

speedup comes from, and 2- the actual reason behind the 

speedup gained by compiling to a program instead of a data 

structure remained untested. The authors conduct their 

experiments on Markov logic networks (MLNs). They explain 

the LRC2CPP algorithm for compiling an MLN into a C++ 

program. LRC2CPP is a recursive algorithm which takes as 

input an MLN M and a variable name vname, and outputs a 

C++ code which computes Z(M) and stores it in a variable 

called vname. Their experiment indicates that the speedup in 

LRC2CPP is mostly due to the reasoning with a low-level 

program instead of a data structure. They also explored why 

reasoning with a low-level program is more efficient than 

reasoning with a data structure. This was done by designing an 

implementation-independent experiment using which they 

tested and validated Kazemi and Poole (2016)’s hypothesis 

stating that low-level programs can be compiled and optimized, 

while reasoning with a data structure requires a virtual machine 

to interpret the computations, and compilers are known to be 

faster than interpreters [18]. 

3. Proposed method 

We’ve decided to use the GCC compiler for our idea. The 

reason being, this particular compiler is open source, can be 

used for compiler optimization as it has many advantageous 

features which could be helpful in optimization.  Along with the 

type of compiler we decided to do phase level optimization, this 

idea would be helpful in deeper optimization when compared 

to the whole benchmark’s optimization result. We segregate 

data about different optimization ressults to build a training 

model. The result stored will be the best among all different 

optimization possibilities. Training dataset also stores the each 

and every benchmark’s execution time, size of the program. To 

do all this process we use Continuous Collective Confirmation 

framework tool. After gathering all these, we test on new 

benchmarks and the prediction’s outcome will be the best 

compiler optimization. 

4. Conclusion 

We have presented many methods to optimize the compiler 

performance. The AI model structure changes frequently 

depending on the data. The presented methods compile the data 

in efficient way and saves the time, such as incremental 

compilation that compiles only the changing structure and other 

remain unaffected, and thus saves time. There are open source 

API's that acts as front end as well as compiler for hardware. 

The program’s execution time, size, various optimization 

results will be collected and we build a training model. This 

model will be helpful in finding the best optimization 

parameters for new AI structures and various programs. We 

will try to incorporate the presented methods with other 

methods for increasing the efficiency, so that parallelism and 

caching can be improved to speed up the runtime. 
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