
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

52

Abstract: Android is currently the most popular OS that is used

on smartphones. In today’s fast world it is necessary that the

Applications running on the android platform are optimized. This

paper presents various techniques using which many android

applications can be optimized.

Keywords: Android, Battery, CPU usage, Network usage,

Memory usage, Android Proguard.

1. Introduction

In today’s fast world, the end users have very low patience

level. No customer would like to use applications that are slow

and/or consume too much battery power. Also the hardware that

can be provided in a smartphone is limited because of the size

and the weight limitations. There is a need for the software

writers to use this hardware as efficiently as possible and write

a very optimized code such that the applications run very fast.

Basic factors of an application which decide its performance are

the CPU usage, the Battery consumption, the Network usage

and the Memory usage. If we can optimize CPU, Memory and

Network usage, we will also get some optimization on Battery

Consumption; i.e. the application will consume a little less

power. There are many techniques using which some

optimization can be achieved on each of these factors. Many

such techniques have been discussed in the following part of

this paper. This paper also discusses about Android Pro guard,

which is used for making the reverse engineering of the

applications very difficult.

2. Literature survey

Each of the factors that affect the application performance

and some optimization techniques that can applied on them

have been discussed below one by one.

A. Optimizing CPU usage

One of the main characteristics of a good programmer (in any

programming language) is: Do not do computations that are not

necessary. Same thing also applies in Android Programming

(where mostly java is used). One of the frequent mistakes that

some programmers tend to make is that they calculate the value

of a variable inside a loop, where every time the result will be

the same. In such cases it is better to calculate this value outside

the loop. Same way, if an expression is repeated multiple times

but evaluates to a same value each time, it is better to evaluate

it only once, store the value in a variable and use the variable

the next time the value of the expression is required.

 Jae Kyu Lee and Jong Yeol Lee [1], Sangchul Lee and

Jae Wook Jeon [2], Andreas Ulvesand and Daniel

Eriksson [4] have experimentally found out that native

code implementations should be preferred over java

when it comes to integer calculations, recursions and

memory access operations. They also found out that

the floating point calculations can be done more

efficiently using java. However, Gary Sims [5]

experimentally found out that the gap between the

performance using Native code and java has

drastically reduced since the release of 64-bit Android

Marshmallow.

 If inside a loop, data is being fetched from a Global

array, the data first can be copied to a local array and

then the local array can be used to get the required data

inside the loop. This reduces the time spent on lookups

[6].

 Use of enhanced for-loops can achieve some

performance improvement for devices without a JIT

[6].

 Knowing and using the libraries: When using an

existing library code, the system has a freedom of

replacing calls to library functions with the hand-

coded assembler, which in most cases is better than the

best code that a JIT produces for an equivalent java.

 If inside a class variables with only constant values are

declared, use ‘static final’ keyword to declare each of

the variable since doing this will not require the

execution of <clinit> method. The constants directly

go into the static field initializers in the dex file.

B. Optimizing memory usage

 Unnecessary objects should not be created. Creation of

objects requires some processing and memory. If

creation of some objects can be avoided, it should be.

 Do not create temporary objects inside a loop. This

will simply consume n times more memory (where n

is the number of times the loop runs).

 Use primitive data types wherever possible, e.g.,

‘Integer’ boxed object takes 4 times more memory as

compared to ‘int’ primitive data type.

 Do not keep services running in background unless

they are absolutely required. They are memory

Optimization of Android Applications: A Survey

Rahul Lotlikar1, Gajanan Gawde2

1Student, Department of Computer Science and Engineering, Goa College of Engineering, Goa, India
2Professor, Department of Computer Science and Engineering, Goa College of Engineering, Goa, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

53

expensive.

 Whenever user navigates from one activity to other,

release the resources the earlier activity was using.

This can be done in onStop and onPause callbacks.

C. Optimizing battery consumption

 If there are any redundant operations which can be cut

out, they should be. For example, some downloaded

data can be cached instead of repeatedly re-

downloading it.

 Some operations which need not be done right away,

should be done when the phone has been put for

charging. E.g. backing up some data to a cloud.

 Unnecessary services running in the background

should be stopped. They consume both the memory

and the power.

D. Optimizing network usage

In general, optimizing network usage means reducing the

amount of data sent over the network.

 Wherever possible, try to compress the data and then

send. This will require some extra processing to

extract the compressed data, but comparatively, the

extra processing is worth for saving some network

traffic and also the battery power required to transfer

the extra traffic.

 As mentioned earlier, caching the data which is

redundantly downloaded can save a lot of network

usage (and battery consumption).

E. Android proguard

Proguard [9] is a Java class file shrinker, optimizer,

obfuscator, and preverifier. We can reduce the size of the APK

by applying Proguard to our application. The storage space it

takes after the installation will also reduce.

 In the shrinking step it detects and removes unused

classes, methods, fields, and attributes.

 In the optimization step, the bytecode of the methods

is analyzed and optimized.

 The remaining classes, fields and methods are

renamed in the obfuscation step using short and

meaningless names. Doing this makes the reverse

engineering of the application very difficult.

 In the preverification step, the preverification

information required for the Java 6 and higher and for

the Java Micro edition is added to the classes.

Fig. 1. Proguard Structure [9]

3. Conclusion

By using some good programming techniques, we can

optimize our Android Applications. Optimizing for CPU

Usage and Network Usage can also reduce battery

consumption to some extent. By applying proper memory

optimization techniques, we can prevent memory leaks and

save a lot of RAM wastage. Using Android Proguard, we can

reduce the size of the APK and make the reverse engineering

of the application difficult. This increases the security of the

application.

References

[1] Jae Kyu Lee and Jong Yeol Lee, “Android programming techniques for

improving performance”, in Awareness Science and Technology

(iCAST), 2011 3rd International Conference on, pages 386-389, Sept.

2011.

[2] Sangchul Lee and Jae Wook Jeon, “Evaluating performance of Android

platform using native C for embedded systems”, in Control Automation

and Systems (ICCAS), 2010 International Conference on, pages 1160-

1163, Oct. 2010.

[3] Andreaz Lewerentz and Jonathan Lindvall, “Performance and Energy

Optimization for the Android Platform,” in Bachelor Thesis in Software

Engineering, June 2012.

[4] Andreas Ulvesand and Daniel Eriksson. “Native code on Android: A

performance comparison of Java and native C on Android”. Bachelor's

thesis at NADA, KTH Royal Institute of Technology, Stockholm. 2011.

[5] Gary Sims, “Java vs C app performance”,

https://www.androidauthority.com/java-vs-c-app-performance-689081/,

May 2016.

[6] “Performance Tips”, https://developer.android.com/training/articles/perf-

tips

[7] “Optimize for Battery Life”,

https://developer.android.com/topic/performance/power

[8] “Best Practices for Memory Optimization on Android”,

https://hsc.com/Blog/Best-Practices-For-Memory-Optimization-on-

Android-1

[9] “Proguard Manual”,

https://www.guardsquare.com/en/products/proguard/manual/introductio

n

