
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

467

Abstract: Real time application must be very fast and reliable

because it as to respond as quickly as possible. To do so the code

which as to execute to perform that operation or task should be

clear and optimized. But while coding programmer can’t

concentrate much on optimized code so this task as to assign for

compiler so that while compiling the code it goes through the code

once to analyze is there any code which can be optimized by

applying optimization techniques. In this paper we moved one step

forward and we are grouping these optimization techniques so that

instead of applying only one or two optimization techniques apply

all and output a good optimized code to run more fast and

efficiently.

Keywords: Optimization Techniques, Applications, Coding.

1. Introduction

Now-a-days in the competitive world of technology code has

been used in many of the real time application. Code plays a

vital role in any of the development works. But due to some of

the reasons that the code being very large, time consuming,

debugging, resource consumption requires to be optimized.

Optimization is the technique for transforming the code which

intern improves delivery speed and resource consumption.

Optimization usually represent program in the lower level for

better understandability and convenience purpose. In this we

are focusing on combining the code optimization techniques

which overcomes the existing disadvantages of the normal

code. Optimization must and should result in correct semantics

of the program, minimum resource consumption and faster in

optimizing the code itself.

2. Related works and discussions

A. Literature Survey

This paper mainly focuses on optimizing loops. Loops

consumes more resource and time to get execute so to make

them consume less resource and less time to execute the LLVM

(Low Level Virtual Machine) namely loop fusion. Loop fusion

combines the two loops by adding the second loop to the first

loop by deleting the second loop. But to do this some conditions

has to fallow i.e. two loops must contain same number of

iterations, there should not be any code between two loops, data

between two loops must be independent.

By doing this we can reduce the number of thread creations

to execute loops iteratively so by decreasing the number of

threads energy consumption can be reduced and program can

be execute fast.

LLVM is designed as a modular system to compile C/C++

programming language. In this system can enable optimizations

level of compiling by partially vectorized loops i.e the loops can

be execute in parallel manner if a system is a multiprocessor

system. So that the it improves the temporal and spatial locality.

Loop fusion reduces the cache miss rate and increases the hit

time and hit rate. Finally, LLVM optimizes the loops by using

mathematical compile time transformations steps called passes

these passes are built by PassBuilder class. Loop fusion

algorithm decreases the number of loops by merging them and

by applying parallelization and vectorization increases the

performance on multi-core architectures. [1]

Another survey is made by Paul B Schneck on compiler

optimization techniques. It describes the optimization

techniques and their grouping. They are grouped into three

categories as machine dependent, architecture dependent and

architecture independent.

Machine dependent architecture are basically used to reduce

the time and the program space and they are used and

implemented locally and are performed on short time generated

codes with some applicable properties. In these optimization

techniques the instructions have been considered. In the

architecture dependent optimization, the instructions are not

been considered and are used globally. The implementation

takes place while generating the code or the program. The

structure of the compiler is the main consideration of the

architecture dependent optimization.

The architecture independent optimization is similar to the

architecture dependent optimization but they rely on the

dependencies and the flow between the codes in the program.

This paper also includes the review about the universal

optimization. They finally conclude that the architecture

independent optimization is responsible for the increased speed

of the compilers [3].

B. Overview of the existing works

Some of the code optimization techniques are as follows:

1. Basic blocks

2. Common sub expression elimination

3. Control flow graph

4. Dead code elimination

5. Loop optimization

Hybrid Code Optimization Technology

M. Supriya1, B. K. Harini2, Sini Anna Alex3

1,2Student, Department of Computer Science and Engg., M. S. Ramaiah Institute of Technology, Bangalore, India
3Assistant Professor, Dept. of Computer Science and Engg., M. S. Ramaiah Inst. of Tech., Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

468

1) Basic blocks

Codes are generally executed in the linear sequence i.e. step

by step execution. They are said to be the basic blocks of the

code. The compiler decomposes the code into the number of

blocks. Normal codes have the jump statements which are said

to have more computation but these blocks doesn’t involve in

any of the go to or jump statements.

When the execution starts from the first line a block will be

created for the line and flow will be maintained till the

completion of the respective block. Once a block is created for

the particular code there would be no permission for the other

codes to enter the block or exit the block.

The code inside the block will be executed exactly once. But

what about the jump or loop statements in blocks? The loops or

jump statement will be created as the separate block so that

there wouldn’t be any interruption for the normal codes by these

statements. This helps in faster execution of the codes.

2) Common sub expression elimination

The expressions which already been computed will be

appeared in the code again and again then those expressions can

be called as common sub expression. As the name itself suggest

that a sub expression which is commonly used will be

identified. After identification of the expression the value will

be computed. The value assigned to the identified expression

will be replaced wherever being used in the entire program. The

common sub expressing can be classified into local and global

common sub expressions. Local sub expression where the

search for the expression will be restricted for the particular

blocks where as in global common sub expression searches for

the expression in the entire program or the procedure. This

method would help in reducing the computation and lesser

memory usage [6].

3) Control flow graph

Here in this the blocks will be represented as nodes. Control

flow graphs gives the information about where to go next or the

flow to be followed further i.e. control information. This control

information will be given inside the blocks itself to avoid

confusion. It helps in providing the connectivity between the

nodes i.e. blocks.

4) Dead code elimination

There are some codes which is never used or not reachable

or in case used their output will not be useful. Those codes can

be called as dead codes. So, by eliminating such codes will be

highly advantageous. It would decrease the code size, lesser

execution time, minimized memory usage [7].

5) Loop optimization

Loops usually eats up a larger time for execution and more

computations. There are some codes in the loops which

produces the same output even inside or outside the loop. So, it

is better to maintain such codes outside the loops. Sometimes

programs tend to execute more loops. Better to avoid loops as

much as possible to improve accuracy. Loop optimization is the

process of increasing the execution speed and reduce the

overheads introduced by the loops [5].

C. Proposed system

In the proposed system the program will be divided into

number of blocks. The blocks will be represented in the form of

nodes. The flow between the nodes i.e. control information will

be provided by the control flow directed graph. Once the code

is been divided into blocks. If the block includes dead codes,

loops, expressions they will be further optimized for improved

efficiency. Once the entire code is been analyzed for the

particular block. Identify the dead codes. Identification process

is done by finding out declared and unused expression,

expressions whose output doesn’t impact the programs

execution and unreachable codes. In each and every block we

are removing the dead code which helps in faster execution of

code, code minimized etc. once the dead code elimination is

ended the loop optimization starts up for each and every block.

While analyzing the block check for the code which results

in same output if present inside or outside the loop. Then place

such codes outside the loops. If there are two blocks with two

separate loops then combine such blocks into one but with some

constraints applied. The loops should have same number of

iterations, shouldn’t have code in-between them. Such codes

which satisfy the above conditions can be merged into two and

proceeded further. If loop variables indexes into an array then

interchange the inner loop to outer loop. Such helps in

improving the locality. When a while loop is encountered

replace the code by do while loop for reducing the number of

jumps. When nested loops are seen apply skewing. If there are

no dependencies between the loops then partition them with the

many number of blocks. After the loop optimization perform

common sub expression elimination. Find the sub expression in

the program and compute the expression. Store the computed

expression in the particular variable and replace the variable

when required instead of computing the expression again and

again.

D. Example

int main()

{

int i ,a=1,n,b,c,d,e,sum,diff;

printf(“Enter the n value\n”);

scanf(“%d”, &n);

for(i=0;i<n;i++)

{

sum = a+i;

}

Printf(“sum=%d\n”,sum);

for(i=0;i<n;i++) //multiple loops

{

diff = a-i;

}

Printf(“diff =%d\n”,diff);

b=sum; //dead code

if(b>10)

{

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

469

c=d+5;

}

Else

{

printf(“invalid”);

}

e=d+5;

 } //common sub expression

E. Blocks

Here in the above block 2 regenerated by combing two loops

into one with the constraints applied to improve the efficiency.

In the above optimized block 4 code the dead code like b=

sum; has been eliminated and the common sub expression like

d+5 computation for the second time has been optimized.

3. Future implementation

Once the code has been completed developed a machine

learning algorithm can be used. A pattern matching algorithm

can be used. Pattern matching algorithm can be used for the

each and every block. So that only the required optimization

technique can be used for the particular code. This method can

be used to improve the efficiency. And this method can also be

added with a parallelization i.e. more than one blocks executed

at the same time.

4. Conclusion

The major objective of our proposed paper is to combine the

code optimization techniques. So that all the optimization

techniques can be applied on a program while compiling which

brings an optimized code. These optimization techniques

groped system helps in increased speed execution, reduced

overhead associated with loops, code improvement, less

resource consumption, parallel execution of blocks, faster

execution etc. so in the real world applications this code can be

used very reliably. This hybrid optimization technique

eliminates the dead code, invariant loops, computing same

expression again and again in a program and then starts

execution by dividing them into the blocks so that no other code

will interpret that block of code and to maintain connectivity

between these blocks i.e. to maintain flow of execution control

flow graph in used. By performing all these operations finally,

we can get an optimized code which can be execute faster by

consuming less resource and time.

References

[1] I. Ştirb and H. Ciocârlie, "Improving performance and energy

consumption with loop fusion optimization and parallelization," 2016

IEEE 17th International Symposium on Computational Intelligence and

Informatics (CINTI), Budapest, 2016, pp. 000099-000104.

[2] Anjan Kumar Sarma, “New trends and Challenges in Source Code

Optimization,” in International Journal of Computer Applications,

Volume 131, December 2015.

[3] Paul B. Schneck, “A Survey of Compiler Optimization Techniques,”

1973.

[4] Neeraj Kumar, Saroj Hiranwal, “Improving Code Efficiency by Code

Optimising Techniques,” in International Research Journal of

Engineering and Technology, vol. 3, no. 4, April 2016.

[5] https://en.wikipedia.org/wiki/Loop_optimization

[6] https://en.wikipedia.org/wiki/Common_subexpression_elimination

[7] https://en.wikipedia.org/wiki/Dead_code

