
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

463

Abstract: Designing an optimized compiler is not only difficult

but also very time-consuming, especially when it has to be done

manually. Recent work has proven how the design and

construction can be greatly simplified and improved by leveraging

machine learning approaches. Most approaches employing

machine learning techniques require features of the program to be

specified. Selecting the best features is crucial to increase the

quality of the heuristics in machine learning and deep learning.

However, even having chosen the best possible heuristic may not

be enough as training the machine learning model is an expensive

and a repetitive task. This paper discusses the different techniques

that can be utilized to optimize and further improve the quality of

the heuristics chosen and the overall quality of the machine

learning and deep learning models, thus improving the efficiency

of the compiler. These techniques include addressing various

issues including but not limited to the phase-ordering problem,

multiple evaluations of a program in an iterative approach and

time taken to find the optimal heuristic.

Keywords: compiler optimization, machine learning, deep

learning, phase-ordering, loop unrolling, survey.

1. Introduction

Using machine learning in order to optimize a compiler is a

technique that has received considerable interest in the past

decade. A compiler-writer had to manually create and fine-tune

a feature for optimization and this was not an easy task as it is

a complex problem and the interaction of the compiler with the

rest of the architecture had to be taken into consideration as

well. This time-consuming and laborious process had to be

repeated for multiple heuristics and the architecture had to be

changed accordingly. Hence, exploiting machine learning and

deep learning techniques for the purpose of automating the

optimization of the compiler is an attractive option.

In order to overcome this problem, iterative compilation was

introduced. While it was an effective method of automating the

heuristic generation process, the time taken was still substantial.

Hence, multiple improvements have been suggested in order to

further optimize the compiler by focusing on the different areas

that can be improved.

Much of the research has been oriented around solving the

problem of generation of a sequence of optimization passes that

is optimal, termed as the phase-ordering problem. The

substantial time taken by iterative compilation can be reduced

by multiple techniques such as focusing the search space in

iterative compilation or using active learning. Alternatively, the

iterative process can be eliminated altogether by employing a

deep learning model that takes the raw source code as input, or

by employing an artificial neural network.

2. Literature survey

Zheng Wang et al. in their research work have described the

use of machine learning techniques for compiler optimization.

Their proposed system consisted of an ensemble model that

included algorithms such as Support Vector Machines,

Decision Tree and K-means clustering. Thus, the ensemble

model constructed was a mixture of supervised and

unsupervised algorithms. Their model was tested and it was

found to have efficient and accurate results. Parallel program

optimization is the future scope of their area of work [1].

Antoine, Monsifrot et al. in their work describe the

dependency of compiler optimization on microprocessor

architecture. Their work discusses a method that targets a

particular microprocessor to achieve compiler optimization

automatically using machine learning. The method is evaluated

against the loop unrolling method. Loop unrolling also called

as loop unwinding, is a technique used for loop transformation.

It makes an attempt to optimize the execution speed of a

program at the expense of its binary size. Decision tree

algorithm and Boosting has been utilized in this piece of work.

To conclude, machine learning algorithms other than decision

tree can be explored to achieve loop unrolling [2].

Cummins et al. propose a model based on deep neural

networks to train on raw code. The model aims at heustrics

optimization and is flexible as it can solve multiple optimization

problems. The predictive model is trained using supervised

learning. The model aims to achieve maximum performance by

learning the relation between important features and

optimization decision. The proposed deep tune model extracts

important features automatically and this system is evaluated

against two standard techniques and it is found to have

performed better than both [3].

Sameer Kulkarni et al. in their research work attempt to solve

the phase ordering problem that is encountered while

optimizing a compiler. The proposed method introduces an

automatic approach to select a good order in which these

optimizations must be performed giving rise to a dynamic

A Survey of Machine Learning and Deep

Learning Techniques for Compiler Optimization

K. Manasvi Bhat1, Pratiksha P. Anchalia2, Rushali Mohbe3, A. Parkavi4

1.,2,3Student, Dept. of Computer Science and Engineering, M. S. Ramaiah Inst. of Technology, Bangalore, India
4Assistant Professor, Dept. of Computer Science and Engg., M. S. Ramaiah Inst. of Tech., Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

464

compiler. It compares the problem to a Markov process and

utilizes characteristics of the current state to solve the phase

ordering problem. They also propose a neuro evolution based

technique to design a neural network that will perform

optimization. The Neuro Evolution of Augmenting Topologies

(NEAT) utilizes a neural network for phase ordering. The phase

ordering problem has been explored for a long period of time

and the proposed neuro evolution based approach makes a

commendable contribution in addressing this problem [4].

Cong et al. in their work make an effort to study the impact

of compiler optimizations on High Level Synthesis. HLS is

described as a process that accepts input as source code in a

high level language to generate register-transfer-level codes

(RTL). The authors study the impact of phase ordering, source

and intermediate register (IR) level optimizations on high level

synthesis. The source level optimizations studied include loop

unwinding, loop pipelining and array partitioning. The

Intermediate Register (IR) level optimizations include a set of

several unique optimizations. Random Search and Genetic

Algorithms were implemented to study the effect of

Intermediate Register (IR) level optimizations on high level

synthesis. The future scope of this piece of research can include

the development of a predictive model that would help foresee

the effect of compiler optimizations on high level synthesis [5].

Wawrzynek et al. in their research work propose the usage of

reinforcement learning agents for the purpose of addressing the

phase-ordering problem. They make use of Policy Gradient and

Deep Q-Network for the purpose. The various states in

reinforcement learning are represented using several static

features which are extracted from the intermediate

representation of the LLVM program. Considering the number

of clock cycles as the performance metric, it is found that this

technique is 16% better in performance than the other

algorithms which are currently in use [6].

Jay Patel et al. in their research work propose a technique to

address the problem of applying optimization using artificial

neural networks. 4Cast-XL is made use of for constructing

ANNs which is integrated into Jikes RVM’s optimization

driver. A series of steps are applied on every method that is

dynamically compiled in order to obtain the optimization

technique that is best suited for the method [7].

Silvano et al. in their research work propose a technique to

provide application-specific optimizations. The probability

distribution of the various compiler optimization techniques is

obtained by applying statistical methodology and sampling of

the same is performed. The relevant statistical relations are

learnt from training various applications. Bayesian networks

are made use of as the statistical model. The proposed technique

is found to have three times better performance than the random

iterative compilation [8].

Vega-Lopez et al. propose a technique to automate the

process of taking machine learning models from their prototype

into deployment. The translation of machine learning models

into their optimized source code is performed using a special-

purpose compiler. The technique ensures a modular structure

along with an efficient code which integrates seamlessly in

production environments [9].

Wei, Schwartz et al. in their research work propose a new

infrastructure to overcome the problems faced as a result of the

existing frameworks which make use of deep learning

techniques. Various techniques for the optimization of

compilers are proposed to optimize the neural network

computations [10].

Machine learning models have been employed in compilers

to select a reasonable list of features and remove any redundant

ones. Hugh Leather et al. proposes a method to generate new

features by searching through the entire feature space. The

feature space has been represented as a grammar wherein every

sentence represents a feature. The entire feature space is

searched for heuristics that can best contribute to the increase

in the performance of the machine learning model [11].

In an alternate approach by F. Agakov et al., they proposed

to accelerate the process of iterative compilation by

automatically focussing the search on areas that would give the

best performance. This method is not restricted by any search

algorithm, compiler architecture or search space. Program

features are used in order to focus the search when a new

program is encountered. This technique has been proven to

improve the search time by a significant amount, especially on

large search spaces [12].

In order to reduce the time required in finding optimal

heuristics, William F. Ogilvie et al. proposed employing active

learning in compiler design which is capable of minimizing the

cost of iterative compilation. This approach not only selects the

training samples required but it also selects the number of

samples required per example using sequential analysis. Such a

system greatly simplifies the process of iterative compilation

and makes it faster [13].

Apart from choosing the right heuristics and ensuring that the

time taken to do so is not substantial, it is also necessary to build

a compiler that is capable of adjusting to the modifications in

the architecture. Christophe Dubach et al. addresses this

challenge by employing machine learning to automatically

adapt to the changes in the underlying micro-architecture. Their

approach is the first step in the building of a universal compiler

that can optimize a program for any underlying platform [14].

While it is important to increase the performance of the

compiler, there should also be an efficient metric in order to

determine the speedup of the optimized program. Christophe

Dubach et al. proposed a machine learning technique that is

capable of predicting the speedup of an optimized program

using the features of the modified program. This model can then

be used to anticipate the speedup of a program without actually

executing it [15].

3. Discussions

 In our survey, we identified the phase ordering problem as

one of the most common problems faced while performing

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

465

compiler optimization. The problem of determining the order in

which the optimization passes need to be applied in order to

result in an improved performance of the generated code is

termed as the phase-ordering problem. Several research papers

addressed this problem with the aim of mitigating the impact of

the phase-ordering problem on the efficiency and performance

of the compiler. The use of artificial neural networks for

addressing the problem demonstrates that profiles of programs

can be used for code optimization. In comparison to it,

reinforcement learning algorithms result in 16% better

performance.

Loop unrolling also termed as loop unwinding is a

transformation performed to increase the speed of the compiler.

A loop is re-written as a sequence of similar independent

statements to minimize the overhead. A compromise on the

binary size has to be made in order to achieve this

transformation. This problem is often clubbed with loop

pipelining. In our study we observed that many researchers

proposed systems and evaluated their systems against the

existing loop unrolling method. They made use of several

machine learning algorithms such as boosting and the decision

tree algorithm. It was found that machine learning techniques

gave better results than the existing techniques. Thus a variety

of advanced machine learning techniques to achieve better

performance must be explored.

The time that a machine learning algorithm takes to

determine the best heuristics to optimize the compiler, although

fast, is not fast enough. The two common techniques for

addressing this problem is focusing the iterative search and

employing active learning. While focusing the search would

seem like the better option, it is interesting to note that with

active learning, not only is the time taken to compute the

heuristics reduced, but the number of training samples required

is also greatly reduced, thus making is much easier to use.

In order to overcome the problems of the random iterative

compilation techniques, auto-tuning techniques, which make

use of Bayesian networks, provide application-specific

optimization which ensuring three times faster results than

random iterative compilation. The future scope of this

technique can be its use in addressing the phase-ordering

problem.

4. Conclusion

A survey of the research work based on compiler

optimization techniques has proven that the problems in this

field which were once considered to be cumbersome can now

be addressed efficiently with the use of machine learning

techniques. The findings of our survey helped us conclude that

the use of deep learning and machine learning techniques for

compiler optimization have considerably improved the

performance of the compiler.

Several traditional machine-learning techniques as well as

emerging techniques, such as artificial neural networks (ANN),

supervised-learning based techniques, unsupervised learning

based techniques and other advanced techniques have been

implemented to achieve compiler optimization. Identifying the

problems faced by a compiler plays a key role in choosing a

method to address the same. In most cases researchers made use

of an ensemble of several techniques to obtain best possible

results.

This survey paper is an attempt at aggregating the findings in

the field of compiler optimization using machine learning

techniques. Further exploration of the advanced and emerging

techniques described and a combination of these to achieve

compiler optimization beyond the state-of-the-art performance

of the same can be the future scope of this area of work. We aim

to assist researchers compare their proposed methodologies

with the existing ones that have been studied in our survey.

References

[1] Wang, Zheng, and Michael O'Boyle. "Machine learning in compiler

optimization." Proceedings of the IEEE, 99 (2018): 1-23.

[2] Monsifrot, Antoine, François Bodin, and Rene Quiniou. "A machine

learning approach to automatic production of compiler heuristics." in

International conference on artificial intelligence: methodology, systems,

and applications, pp. 41-50. Springer, Berlin, Heidelberg, 2002.

[3] Cummins, Chris, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

"End-to-end deep learning of optimization heuristics." in 2017 26th

International Conference on Parallel Architectures and Compilation

Techniques (PACT), pp. 219-232. IEEE, 2017.

[4] Kulkarni, Sameer, and John Cavazos. "Mitigating the compiler

optimization phase-ordering problem using machine learning." in ACM

SIGPLAN Notices, vol. 47, no. 10, pp. 147-162. ACM, 2012.

[5] Cong, Jason, Bin Liu, Raghu Prabhakar, and Peng Zhang. "A study on the

impact of compiler optimizations on high-level synthesis." in

International Workshop on Languages and Compilers for Parallel

Computing, pp. 143-157. Springer, Berlin, Heidelberg, 2012.

[6] Haj-Ali, Ameer, Qijing Huang, William Moses, John Xiang, Ion Stoica,

Krste Asanovic, and John Wawrzynek. "Auto Phase: Compiler Phase-

Ordering for High Level Synthesis with Deep Reinforcement Learning."

arXiv preprint arXiv:1901.04615(2019).

[7] Patel, Jay, and Mahesh Panchal. "Code Optimization in Compilers using

ANN." (2014): 557-561.

[8] Ashouri, Amir Hossein, Gianluca Palermo, and Cristina Silvano. "Auto-

tuning Techniques for Compiler Optimization." (2016).

[9] Castro-Lopez, Oscar, and Ines F. Vega-Lopez. "Multi-target compiler for

the deployment of machine learning models." In Proceedings of the 2019

IEEE/ACM International Symposium on Code Generation and

Optimization, pp. 280-281. IEEE Press, 2019.

[10] Wei, Richard, Lane Schwartz, and Vikram Adve. "A modern compiler

infrastructure for deep learning systems with adjoint code generation in a

domain-specific IR." (2017).

[11] Leather, Hugh, Edwin Bonilla, and Michael O'Boyle. "Automatic

feature generation for machine learning based optimization compilation."

in Proceedings of the 7th annual IEEE/ACM International Symposium on

Code Generation and Optimization, pp. 81-91. IEEE Computer Society,

2009.

[12] Agakov, Felix, Edwin Bonilla, John Cavazos, Björn Franke, Grigori

Fursin, Michael FP O'Boyle, John Thomson, Marc Toussaint, and

Christopher KI Williams. "Using machine learning to focus iterative

optimization." In Proceedings of the international symposium on code

generation and optimization, pp. 295-305. IEEE Computer Society, 2006.

[13] Ogilvie, William F., Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

"Minimizing the cost of iterative compilation with active learning." in

Proceedings of the 2017 International Symposium on Code Generation

and Optimization, pp. 245-256. IEEE Press, 2017.

[14] Dubach, Christophe, Timothy M. Jones, Edwin V. Bonilla, Grigori

Fursin, and Michael FP O'Boyle. "Portable compiler optimization across

embedded programs and microarchitectures using machine learning." in

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

466

Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 78-88. ACM, 2009.

[15] Dubach, Christophe, John Cavazos, Björn Franke, Grigori Fursin,

Michael FP O'Boyle, and Olivier Temam. "Fast compiler optimization

evaluation using code-feature based performance prediction." in

Proceedings of the 4th international conference on Computing frontiers,

pp. 131-142. ACM, 2007.

