
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

455

Abstract: Code optimization leads to less time and resource

consumption while executing the program. Machine learning

techniques are used to optimize the code. Optimization most of the

time carried iteratively. Choosing the order of optimization and

best approach for optimization is the issue to be addressed.

Reducing the complexity or using the less resources of system such

as Processor time, memory consumption and power consumption

is the agenda of the optimization. We review different kinds of

methods of optimization using literature survey.

Keywords: optimization, machine, learning, memory, resource,

processor

1. Introduction

Creating the best iterative code optimization using machine

learning techniques is not an easy task. Basically compilers

have two main jobs to do 1. Translation and 2. Compilation.

Reducing the complexity of programs may be by removing the

duplicate declaration of variable, eliminating few lines of code

which are duplicate or available by default or reducing the

methods which can be compromised is basically what code

optimization. There are two ways of optimization 1. Single way

and 2. Multi-way optimization. These approaches are applied

iteratively to get the better quality result. Reducing the

complexity or using the less resources of system such as

Processor time, memory consumption and power consumption

is the agenda of the optimization. Naturally, better optimization

leads to better system with less execution time.

For reducing code optimization, selection of good

optimization technique, better order for optimizing and

reducing the complexity is important. There can be two way of

order of optimization - fixed order and varying order. Different

Machine learning techniques are used for optimization such as

Artificial Neural Network (ANN) and Genetic algorithm ext.

Genetic algorithms applied on the historically available data

features - to be able predict the best optimization technique.

 Iterative code optimization is one of the best optimization

technique. Advantage of this method is, increased optimization

level while not compromising with the program. Disadvantage

is Iterative optimization increases the time taken for

optimization as it runs the model multiple time.

Genetic methods are used to study the past data to be able to

predict the level of optimization for the present data. Until the

researchers found out the automatic iterative optimization it

was tedious job to optimize the compiler. In this paper, we study

different Research paper on compiler optimization using

machine learning approaches to gain the knowledge about the

techniques and methods used for optimization by different

research. By comparing different machine learning techniques

how good the genetic algorithms is, can be answered.

2. Related works

A. Literature review

In our first research paper [1], Prediction technique are used

to study the prior data and based on this best data point is found

out for the best result possible. Machine learning can be

automatic this is the advantage of machine learning in code

optimization [1]. The input for this model is source program fed

to a model i.e. Portable optimizing compiler which generates

the best optimization passes. This method iteratively executed

till the best model. Finally optimized binary code is the final

output for the program. Result Evaluation method that are used

to evolve this model are 1. Cross validation and 2. Best

performance Achievable [1]. Advantage of this is approach it

results in a best optimization technique. Disadvantage is it takes

lot of time.

 In “Machine learning in compiler optimization” by Wang et

al, based on the prior data new data point will be predicted.

There are two main important stages in a model, 1. Training

data used to learn the model. 2. Model applied on recent

programs [2]. Model works like this, first the source program

fed into the feature optimizer. This approach is called as Feature

engineering. In the second approach that is Learning model,

training programs are fed into feature optimizer that will be

given input as supervised machine learner. Finally, a model will

be created. The learning algorithms task is to find out the

correlation between feature and optimal decision. The

disadvantage of this model is it takes more time compare to

other machine approach as support vector machine.

In “Automatic Feature Generation for machine learning

Based optimization compilation” by Leather et. al. [3], compiler

optimization is automated. Quality of the features are ensured

as this are important for the accuracy.

A Study on Iterative Code Optimization using

Machine Learning

G. R. Amith1, K. N. Tejasvini2, A. Parkavi3

1,2Student, Department of computer Science, Ramaiah Institute of Technology, Bangalore, India
3Assistant Professor, Department of computer Science, Ramaiah Institute of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

456

Fig. 1. A generic view of supervised machine learning in compilers

Learned heuristics adopts to new environment. Machine

learning tools deals with the optimization. Feature search is an

important task carried in this paper. The working methods of

this approach are firstly data are generated this are passed to

genetic programming search then feature values are passed to

ML tool. This tool builds the list of features. However, it’s

tedious and time consuming task.

In “Mitigating the compiler optimization phase ordering

problem using machine learning” by Kulkarni et al[4],

Selecting the correct order where optimization techniques are

applied is significant problem. Default optimization decreases

the performance. Artificial Neural Network (ANN) are for

prediction. This were induced using NEAT [4]. Issues with GA

approach is, search technique are expensive as they have to

evaluate different optimization orders. Solution for this is

instead GAs and other expensive techniques machine learning

approach can be used. Main advantage of this technique is its

inexpensive.

In “Studying the influence of standard compiler optimization

on symbolic execution” written by Dong et. al. [5], Symbolic

execution which is time consuming technique for Path-Based

analysis is used. Approaches used in the program are for

conventional programming.

Compiler optimization are performed to evaluate for the

performance of symbolic execution [5]. Using DFS Symbolic

execution are implemented. KLEE is a symbolic execution

engine built on LLVM which is the framework for compilation

[5]. Finding and analyzing the determination is the goal of this

paper. for you.

B. Comparative Analysis

 Artificial Neural Network (ANN) developed similar to the

human way of learning the past data and predicting the

result. ANN also learns from the past data and predicts the

future [4]. Neuro evaluation are used to induce the ANN for

NEAT [4]. Trained model of the ANN uses features to

represent optimized state [4]. ANN mostly used for

prediction. ANN can be used to build power models.

 In a Genetic Programming approach, firstly cost function

generated. Result of Cost function evaluated [2]. Cost

function are used to build an energy.

 Model for optimization. Cost function are also evaluated

quality of optimization [2].

 If would like to continue the approach in next phase well

performing function are kept. Then create new function

using the remaining ones. This can be carried out iteratively

by passing the generated function back to the evaluation

phase [2]. Both ANN and Genetic algorithms are performed

iteratively.

 In any micro architecture portable optimization learns best

optimization approach that can be applied. Achieving the

best optimization and delivering the high quality is the goal

of portable compiler optimization across embedded

programs. for portable optimization, genetic algorithms

were used with hill climbing optimization algorithm [1].

Fig. 2. Portable optimizing compiler over view [1]

 Symbolic execution has a significant influence on compiler

optimization Dong et al. symbolic execution technique used

for verification and testing the reliability of the software [5].

Compare to tradition optimizing techniques modern

compilers for example GCC and LLVM support aggressive

optimization. Most of the approaches that we see above are

although different but iterative optimization used by all [5].

Fig. 3. Two approach for optimal decision

3. Discussion

 Most of the approaches takes in their own time. Compare to

other approaches Genetic algorithms just works fine.

 Symbolic execution although test the reliability it takes its

own time. Symbolic techniques contain large number of

paths.

 Artificial Neural Network which predicts best optimization

method by studying the past data but its slow while no hope

that it can rightly predicts the best optimizing technique is

not trust worthy.

 The accuracy level increase of Artificial Neural networks

depends on the size of the past data available.

 Genetic algorithms other optimization such as hill climbing

and optimization orchestration are resulting good

performance.

 In Machine learning approaches generally face problems of

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-4, April-2019

www.ijresm.com | ISSN (Online): 2581-5792

457

not understanding the complete working style like black

box.

 ANN is not a trust worthy approach as compared. In iterative

code optimization reducing usage of resources and time is

the goal most of the methods that we see mostly seems to be

working just fine.

4. Conclusion

This paper studies multiple approaches of machine learning

for iterative code optimization. Better code Optimization leads

to less resource, reduced time while executing a source

program. We conducted literature survey where we studied

research papers which have used different approaches for the

optimization. In a comparative analysis how genetic algorithms.

are better compared to Artificial Neural Network as found out.

References

[1] C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin and M. F. P. O'Boyle,

"Portable compiler optimisation across embedded programs and

microarchitectures using machine learning," 2009 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),

New York, NY, 2009, pp. 78-88.

[2] Z. Wang and M. O’Boyle, "Machine Learning in Compiler Optimization,"

in Proceedings of the IEEE, vol. 106, no. 11, pp. 1879-1901, Nov. 2018.

[3] H. Leather, E. Bonilla and M. O'Boyle, "Automatic Feature Generation

for Machine Learning Based Optimizing Compilation," 2009

International Symposium on Code Generation and Optimization, Seattle,

WA, 2009, pp. 81-91.

[4] Kulkarni, Sameer & Cavazos, John. (2012). Mitigating the Compiler

Optimization Phase-Ordering Problem using Machine Learning. ACM

SIGPLAN Notices.

[5] S. Dong, O. Olivo, L. Zhang and S. Khurshid, "Studying the influence of

standard compiler optimizations on symbolic execution," 2015 IEEE 26th

International Symposium on Software Reliability Engineering (ISSRE),

Gaithersbury, MD, 2015, pp. 205-215.

[6] Stephenson, Mark & Amarasinghe, Saman & C. Martin, Martin &

O’Reilly, Una-May. Improving compiler heuristics with machine

learning. Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). 38. 77-90,

2003.

[7] J. Chipps, M. Koschmann, S. Orgel, A. Perlis, and J. Smith, “A

mathematical language compiler,” in Proceedings of 11th ACM national

meeting. ACM, 1956,

[8] P. B. Sheridan, “The arithmetic translator-compiler of the ibm fortran

automatic coding system,” Communications of the ACM, 1959.

[9] M. D. McIlroy, “Macro instruction extensions of compiler languages,”

Communications of the ACM, vol. 3, no. 4, pp. 214–220, 1960.

[10] A. Gauci, K. Z. Adami, and J. Abela, “Machine learning for galaxy

morphology classification,”, 2010.

[11] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, et al.

adaptive compilation made efficient. 2005.

[12] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves, D.

Subramanian, L. Torczon, and T Waterman, “Finding effective

compilation sequences,” 2004.

[13] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A predictive

performance model for superscalar processors. In MICRO-39, 2006.

[14] T. S. Karkhanis and J. E. Smith. A first-order super processor model. In

ISCA, 2004.

