
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

373

Abstract: Computer gaming is a key component of the rapidly

growing entertainment industry. While building computer games

has typically been a commercial endeavor, we believe that

designing and constructing a computer game is also a useful

activity for educating one about geometric modeling and computer

graphics. In particular, we will be exposed to the practical issues

surrounding topics such as geometric modeling, rendering,

collision detection, character animation and graphical design.

There are plenty of frameworks available on the internet for game

development, some are free (Cocos2d-x, Godot) while others have

proprietary-versions (Unity, CryEngine, Unreal), but the real

issue is big guns of gaming industry developing their own game

engines for eg. Rockstar and Ubisoft using RAGE and AnvilNext

respectively, this makes it difficult for a developer to go out of its

comfort zone and learn an entirely new framework. Hence, the

goal of the project is to create a 2D game framework using box2D

and UI for basic game design. Although, the end-result is a generic

framework for desktop games a use case of racing game will be

taken.

Keywords: Game; Game Framework; 2D Game

1. Introduction

This research paper will give you the gather and analyze and

give in-depth insights of the PC based Game Design framework

system. The Hardware/Software requirements along with the

Functional/Non-Functional requirements are properly specified

in this document. The purpose is to develop a 2D game

framework, which will contain all the tools for game

development. This paper focuses on the core framework and its

application in a real world use case. Among its current features,

there are:

 Physics support through the Box2D library.

 Static and animated layers, including parallax

scrolling.

 Support to state-based sprite animations.

The project roadmap also includes support for background

music, audio effects, networking and cut scenes.

2. History

Before game engines, games were typically written as

singular entities: a game for the Atari 2600, for example, had to

be designed from the bottom up to make optimal use of the

display hardware—this core display routine is today called the

kernel by retro developers. Other platforms had more leeway,

but even when the display was not a concern, memory

constraints usually sabotaged attempts to create the data-heavy

design that an engine need. Even on more accommodating

platforms, very little could be reused between games. The rapid

advance of arcade hardware which was the leading edge of the

market at the time meant that most of the code would have to

be thrown out afterwards anyway, as later generations of games

would use completely different game designs that took

advantage of extra resources. Thus, most game designs through

the 1980s were designed through a hard-coded rule set with a

small number of levels and graphics data. Since the golden age

of arcade video games, it became common for video game

companies to develop in-house game engines for use with first

party software.

In the 1990s, there was several 2D game creation systems

produced in the 1980s for independent video game

development. These include Pinball Construction Set (1983),

Arcade Game Construction Kit (1988).

3. Architecture

The purpose of the document is to gather and analyze and

give in-depth insights of the PC based Game Design framework

system. The Hardware/Software requirements along with the

Functional/Non-Functional requirements are properly specified

in this document. The purpose of this project is to develop a 2D

game framework, which will contain all the tools for game

development.

Fig. 1. Architecture

We have divided the Game Engine into 5 components. We

will address these components as managers, responsible for

performing some specific tasks.

PC based Game Design

Samayranjan Pradhan1, Shubham Sawant2, Suraj Nishad3, Sanket Chaudhary4, Nilesh Kulal5

1,2,3,4B.E. Student, Department of Computer Engineering, Terna Engineering College, Mumbai, India
5Assistant Professor, Department of Computer Engineering, Terna Engineering College, Mumbai, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

374

4. Components

To understand the working of the architecture the following

components required

A. Input Manager

The term “input” or “user input” refers to the data that a

player provides at run time to a game using an input device. The

structure and type of the data varies from device to device. For

example:

 A touch panel provides information of the coordinate

(x, y) being touched.

 A PS2 mouse provides data in the form of packets

which contains the button state and mouse movement

(x, y) information.

Input manager provides an abstraction layer to access input

devices in a system. It calls functions of a hardware dependent

input library for the specific device to get input data. So, if we

write our game code using the Input manager with keypad as an

input, and later we want to use a joystick as an input device

instead of keypad, then we will be able to do it without major

changes in the code. Also, the game will be portable across

different platforms.

B. Physics Manager

Physics Manager performs two important tasks:

 Simulate movement: It simulates the movement of

objects (or characters) like walking, running or

jumping. Physics Manager simulates forces like

gravity, friction to generate such effects. For example,

in the Mario game, when the Mario is moving with a

velocity (Vx) and the player applies an upward force

on the Mario to make him jump using the keyboard,

the Mario rises in the air and over time, the force of

gravity will act against that initial jumping force,

which will give that nice classic parabolic jump

pattern.

C. Collision detection:

It detects intersection of two or more objects in a game. For

example, in the Mario game, the Mario can collide with bricks,

bullets and enemy objects. The scope of this topic is very vast.

However, we will restrict our discussion to basic collision

detection only. The objects are restricted to 2D space and so,

we will be focusing on three basic types of collisions:

 Circle-Circle Collision

 Rectangle-Rectangle Collision

 Rectangle-Circle Collision

D. Object Manager:

An object is the smallest entity in a game that a player can

see and/or interact with. The character, enemies, weapons,

bullets and background elements such as trees and clouds are

all game objects. The game logic is written around these objects

and the managers perform various tasks on these objects. The

state of an object at any given time is defined by its attributes.

For example, state of the ball in the Arkanoid game is described

by its position (x, y) on the screen and its velocity (speed and

direction of travel).

 Static: An object which is stationary throughout the

game.

Fig. 2. Static

 Dynamic: An object which can move in a game. For

example, cars in a racing game, ball in the Arkanoid

game etc.

Fig. 2. Dynamic

E. Resource manager

There can be various types of resources in different formats

as listed in Table.

F. Graphics manager

Graphics is a vital part in any game. Graphics display

techniques have evolved over time from both hardware and

software perspectives. Graphics works by appealing to our

senses, by drawing our attention and holding on to it and by

immersing us in their world. Graphics manager in our Game

Engine is responsible for handling graphics. It also provides a

graphical user interface (GUI) module which can be used to

create a menu window, help window, game controls window

etc.

Graphics manager can be divided into two modules:

Game Graphics: It is responsible for handling graphics in a

Table 1

Resource

Resource File Format Use

Image BMP, JPG,

JPEG,GIF etc.

Background music, play tunes on some

action, character voice

Sound Buzzer sound,

MP3, AAC,

WAV etc.

Game information, game instructions,

developer information. All such

information can be stored in a text file

and displayed in a game.

Text TXT Files etc. Game information, game instructions,

developer information. All such

information can be stored in a text file

and displayed in a game.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

375

game. It creates graphics according to different shapes of an

object such as circle or rectangle. For example, to create a

motion effect for an object and move the ball along the X axis,

Graphics manager will perform the following steps:

 Draw a circle at position (X, Y) on the LCD screen.

 Draw a circle of same radius with background color at

(X, Y).

 Draw the circle at new position (X+1, Y).

 Graphical User Interface: Graphical User Interface or

GUI is a type of interface that allows users to interact

with an application program through graphical

elements such as menus, widgets and dialog boxes.

GUI elements are usually accessed through a pointing

device such as a mouse or a stylus.

5. Future scope

The prospects are huge, now-a-days gaming is coming like

anything. There are lot of scope over here like Gaming is now

used at Bank’s, for marketing, for education, to improve the IQ

etc. Mobile gaming, i-Phone Gaming and Social Gaming is the

next gen future. One can start his or her career as a gaming

artist, game developer, game taster, game de-coder, porting etc.

Another type of gaming is coming with lot of scope, X-Box,

Nintendo and Simulation Games.

6. Conclusion

Hence, the project report on the proposed system has been

successfully drafted. The proposed system offers a 2D

lightweight game framework, which could be used by game

developers or by game enthusiasts for developing simple 2D

games. The proposed system strives to be platform independent

and easy to use/understand. A simple use-case of car racing pc

game will be taken.

References

[1] S´ergio Correia, Rodrigo Gonc¸alves de Oliveira, Roger Zanonifsergio.

correia, rodrigo. goncalves, “Developing2D games in a declarative way,

Proceedings of SB Games, pp.33-36, 2012.

[2] Florian Knoll, Box2D C++-Top-down car physic, iforce2d_Top down

Car Race Track.h, March 2014.

[3] David Brackeen, Bret Barker - Developing Games in Java 1st edition.

[4] “D Box2d working, http://www.iforce2d.net/b2dtut/

