
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

229

Abstract: The computers can have made benefit for a greater

investment in hardware to mechanize multiplication and division.

Most normal division is suitable for serial and will not be suitable

for highly parallel multiplier. Only 3 iterative steps are needed to

produce a 40-bit reciprocal. The advantages of using the

approximate multipliers is twofold. Multiplication execute lager

time and to a lesser extent division. The algorithm is based on

montgomery method for multiplication and division. The modular

multiplication algorithms are modified and combined in all most

all hardware computation. Division algorithm have been reducing

latency and to improve the computational efficiency, area,

hardware cost and power of the processor. This paper compares

the different division and multiplication algorithms.

Keywords: modular multiplication, modular division,

montgomery method, FPGA technique.

1. Introduction

Arithmetic unit of such a machine computation is necessary

for the multiplication and division. peripheral equipment and

controls may be advantageous to the economy of the machine

to increase the hardware investment in the operation of

multiplication and division. Many algorithms have been

developed for division implementation in hardware algorithm.

The algorithms are based on different aspects as quotient

converge rate, fundamental hardware primitives and

mathematic formulation. Multiplicative methods use hardware

integrated with the floating point multiplier and have low to

moderate latencies. Hardware designers frequently perceive

divisions as infrequent, low priority operations and they

allocate design effort and chip resources. The hardware

architecture for the unified divider/multiplier that implements

the UDMA efficiently supports all the computations. The

simplest and widely used and implemented class of division

algorithm is digit recurrence. Normally division algorithm

consists of divisor, quotient and remainder. Peripheral

equipment and controls may be advantageous to the economy

of the machine to increase the hardware investment in the

operation of multiplication and division. Computers have

evolved rapidly since their creation of multiplication and

division.

2. Literature survey

 Arithmetic unit of such a machine computation is necessary

for the multiplication and division. Fast multiplication is

possible. Modular multiplication is hard. High speed up

processing. Hardware algorithms are redundant. Highly power

consuming. Highly accurate iterative computation.

Multiplicative methods use hardware integrated with the

floating-point multiplier and have low to moderate latencies,

while subtractive methods generally employ separate circuitry

and have low to high latencies [1]. Method for multiplying two

integers. Modulo N while avoiding division by N. Useful for

several computations. Addition and subtraction are unchanged.

Multiplication Speed modular. Required extensive modular

arithmetic. Addition algorithm is unchanged. Time consuming

process. Representation is normally used. Many stages are there

[2]. Numbers are representing in redundant. Modular additions

are performed. There are no propagations. Suitable for VLSI

implementation. Require additional processing. Additional

processing is negligible several modular multiplications have to

be perform. More on squaring and multiplying large integers

[3]. Speed up processor. Requires clock cycle. High radices are

used. Loop are reduced. Addition algorithm is unchanged. Time

consuming process. Representation is normally used. Many

stages are there [4]. Methods used that are faster than FFT.

Involves the simplest methods of multiplication. C and

assembly language is used. Integer also written in assembly.

Discussion on squaring and multiplying. Methods are quite

large numbers. No presence of iterative procedure. Problem is

how to find the best ways [5].

Highly accurate initial approximations. High operating

frequency. Independent of floating point. An iterative

implementation. Does not use logarithmic approximations.

Loss of accuracy. The error in multiplication [6]. Montgomery

multiplication speed up multiplication. High speed. Space

efficient algorithm. Analyze time and space requirement. High

memory storage. SOS and CIOS methods are used. Time

consuming tasks. CIOS operates faster than other montgomery

multiplication. Many stages are there [7]. Improving the

efficiency. Less clock rate. The implementation is done on

FPGA. Length is intermediate result. Several implementations

are used. Implementation is difficult [8]. A simple and efficient

logarithmic multiplier. coding by using VHDL for the FPGA.

MATLAB is used in kernel values. many algorithms are used.

Coding is difficult. Programming can be used. Algorithms is

A Literature Survey on Hardware Multiplication

and Hardware Division Algorithm

Prem Kumar1, B. Hyvallika2, S. Vyshnavi Jyothi3

1Assistant Professor, Department of ECE, Saveetha School of Engineering, Chennai, India
2,3Student, Department of ECE, Saveetha School of Engineering, Chennai, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

230

difficult [9]. Based on standard cell methodology. Increase 20%

area. Low latency for division. Good area performance. High

performance of floating point. Power consumption. Size is

large. Chip area [10].

Implementing the modular exponentiation in RNS.

Computation time is reduced. RNS has benefits in large

numbers. Execution rounds are decreased by 33%. Extension

technique algorithm is implemented. Does not use logarithmic

approximations. Loss of accuracy. The error in multiplication

result [11]. Fast montgomery algorithm. To implement modular

design. Time consuming for large operands. Dominant part of

the computation. Computation is high. Demand for

development [12]. Hardware complexity and latency. Based on

data flow. Algorithms that are fast. Suitable for power sensitive

environment. Limitation in chip. Power consumption. size is

large. Chip area [13]. Improving the efficiency. Less clock rate.

The implementation is done on FPGA. Length is intermediate

result. Full address, save address are used. 1024 bit RSA

exponentiation is used. Modular multiplication can be done. We

cannot use the subtraction. Slow clock cycles. High power

consumption [14]. Suitable for VLSI implementation.

Algorithm is based on montgomery method. Used to avoid

carry propagation. Length is independent of N. Uses shifts

additions and subtraction. Need for managing. Large amount

of computation. Demand for implementation [15].

Throughput is one. Modular multiplication for every clock

cycles. Used in RSA cryptosystem. Security for electronic

banking transaction. Reduce latency. Multiplication of more

than 500 bits done. Suffers from latency. Slow clock. High

power bits to be used [16]. Implement high speed FPGA

address. Improve the performance. Extensive experiments are

done. 70% speed up. Low power consumption. High accuracy.

Increased efficiency. High power consumption. Slow clock

rate. Low performance rate [17]. Implementing the modular

exponentiation in RNS. Computation time is reduced. RNS has

benefits in large numbers. Execution rounds are decreased by

33%. Extension technique algorithm is implemented. Less

storage requirements. High power consumption. Additional

processing is negligible [18]. Enabling achievement of arbitrary

accuracy. Uses the Mitchell’s algorithm. Error % is small as

required. Hardware involves address and shifter. Less power

consuming. Parallel circuits are used. Does not use logarithmic

approximations. Loss of accuracy. The error in multiplication

results [19]. Algorithms are simple. Suitable for hardware

implementations. Consumers less area. Used in digital

communications. Barrette reduction. Large prime field.

Efficiency is challenging. Time consuming process [20].

Highly accurate initial approximations. High operating

frequency. Independent of floating point. An iterative

implementation. Errors in the result. Highly accurate. High

latency [21]. A simple and efficient logarithmic multiplier.

coding by using VHDL for the FPGA. MATLAB is used in

kernel values. many algorithms are used. Achieve arbitrary

accuracy. Simulation is done using Xilinx. Iterative procedure.

Errors in the result. Time and power consuming operation. Loss

of accuracy [22]. Reduction in clock cycles. Maintain critical

path delay. Verilog HDL and FPGA are used. Low power

consumption. Less storage requirement. Better bandwidth

utilization. High power consumption. Iterative accuracy.

Coding is difficult [23]. Developed to reduce latency. Improve

the computational efficiency. Hardware cost is high. Area and

power of processor. High latency operations. High power

consumption. High operating frequency [24]. Development of

logarithm architecture. Design of logarithmic architecture. Low

power consumption. 86% of data processing time. Solution for

hardware efficient. Fast multiplication operation. FXP and FLP

multipliers. we cannot achieve arbitrary accuracy [25].

3. Conclusion

In this paper we discussed about hardware multiplication and

hardware division by using montgomery method. Several

techniques are done for the hardware multiplication and

hardware division like FPGA technique, FXP and FLP

multipliers. The drawbacks of this techniques Less power

consuming. Parallel circuits are used. Does not use logarithmic

approximations. Loss of accuracy. The error in multiplication

results. High power consumption and accuracy can be

developed by using FPGA technique.

References

[1] C. S. Wallace, “A Suggestion for a fast multiplier”, Sep 1962, IEEE

Computer society.

[2] Peter. L, “Modular multiplication without trial division”, April 1985,

American mathematical society.

[3] Naofumi Takagi, Shuzo Yajima, “Modular multiplication hardware

algorithms with redundant representation and their applications to RSA

cryptosystem” July 1992, IEEE Transactions on computers.

[4] Dan Zuras, “More on squaring and multiplying large integers”, Aug 1994,

IEEE Transactions on computers.

[5] Holger Orup, “Simplifying quotient determination in high radix modular

multiplication”, Sep 1995, IEEE Transactions on computers.

[6] Cetinkayakoc,Tolga Acar, “Analyzing and comparing montgomery

multiplication algorithms”, Sep 1996, IEEE Transactions on computers.

[7] S. F. Oberman, Michael.j, “Division algorithms and implementation”,

Aug 1997, IEEE Transactions on computers.

[8] Peter Soderquist, Miriam Leeser, “Division and square root choosing the

right implementation”, July 1997, IEEE Transactions on computer.

[9] S. F. Oberman, “Floating point division and square root algorithm and

implementation in the microprocessor “Oct 1999, IEEE Transactions on

computers.

[10] Loi Ai, A, Tawalbeh. A. F. Tenca, “An algorithm and hardware

architecture for integrated modular division and multiplication”, Feb

2000, IJSCE.

[11] Nadia Nedjah, Luiza De Macedo Mourelle, “Hardware architecture for

the montgomery modular multiplication”, March 2001, IJSCE.

[12] Viktor Bunimor, Manfred Schimmler, “Area and time efficient modular

multiplication of large integers”, April 2003, IEEE Computer society.

[13] David Narh Amanor,Viktor Bunimov, “Efficient hardware architecture

for modular multiplication on FPGAs”, April 2005, Computer society

IEEE .

[14] Marcelo E. Kaihara, “A hardware algorithm for modular” Jan 2005, IEEE

Computer society.

[15] Taek-Jun Kwam,Jeft Drape, “Floating point division and square root

implementation using a taylor -series expansion algorithm with reduced

look-up tables”, June 2008, IEEE Transactions on computers.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

231

[16] Miaoing Huang, KrisGaj, “An optimized hardware architecture for the

montgomery multiplication algorithm”, Aug 2008, IEEE Transactions on

computer

[17] J. H. Yang, C. C Chang, “Efficient residue number system iterative

modular multiplication algorithm for modular exponentiation”, Nov

2008, IEEE Transactions on computers.

[18] Zdenka Babic, Aleksej Auramouic, “An iterative logarithmic multiplier”,

Nov. 2010 IEEE Computer society.

[19] Ingo Rust,Tobias G. Noll, “A Digit-set- interleaved radix-8

division/square root kernal for double precision floating point”, Mar 2010,

IEEE Computer society.

[20] Kihwan Jun, Earl E. Swartzlander, “Modified non-restoring division

algorithm with improved delay profile and error correction”, June 2012,

IEEE Computer society.

[21] Deeksha R Shetty, “Improving accuracy in Mitchell’s logarithmic

multiplication using iterative multiplier for image processing

application”, July 2013, IEEE Computer society.

[22] Khalid javeed, “Serial and parallel interleaved modular multiplier on

FPGA platform”, Sep 2015, IJSCE.

[23] Rohini. S. Hongal, Anita D. J., “Comparative study of different division

algorithms for fixed and floating point arithmetic unit for embedded

applications” Sep 2016, IJSCE.

[24] Durgesh Nandan, Jitendra Kanungu, “65 Years Journey of Logarithm

Multiplier”, April 2018, IJSCE.

