
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

724

Abstract: Data deduplication is an emerging technology that

introduces reduction of storage utilization and an Efficient way of

handling data replication in Secondary Storage. In the

deduplication, data are divided into “multiple chunks” and unique

hash identifier is identified with every chunks. These identifiers are

used to compare the chunks with previously stored chunks and

verified for duplication. High throughput hash less chunking

method called Rapid The maximum-valued byte is included in the

chunk and located at the boundary of the chunk. We propose

chunking method called Rapid Asymmetric Maximum (RAM).

Rapid Asymmetric Maximum (RAM) which improves the

chunking throughput of AE by putting the extreme value at the

boundary of the chunk. It has a low computational overhead which

makes the algorithm faster than existing CDC algorithms. The

low computation overhead of RAM reduces the cost of chunking

process which makes chunking more attractive over AE for low

performance devices such as mobile devices and IoT.

Keywords: Chunking, Deduplication, Rapid Asymmetric

Maximum(RAM), Asymmetric Experimum (AE), Content

Defined Chunking(CDC).

1. Introduction

In hybrid cloud approach for secure authorized

deduplication. Data deduplication is one of important data

compression techniques for eliminating duplicate copies of

repeating data, and has been widely used in cloud storage to

reduce the amount of storage space and save bandwidth. To

protect the privacy of sensitive data while supporting

deduplication, the convergent encryption technique has been

proposed to encrypt the data before outsourcing. To better

protect data security, this paper makes the first attempt to

formally address the problem of authorized data deduplication.

Different from traditional deduplication systems, the

differential privileges of users are further considered in

duplicate check besides the data itself. We also present several

new deduplication constructions supporting authorized

duplicate check in a hybrid cloud architecture. Security analysis

demonstrates that our scheme is secure in terms of the

definitions specified in the proposed security model. As a proof

of concept, we implement a prototype of our proposed

authorized duplicate check scheme and conduct test bed

experiments using our prototype. We show that our proposed

authorized duplicate check scheme incurs minimal overhead

compared to normal operations.

2. Background

Chunking is used in many data compression applications. For

example, it is used in data deduplication and remote differential

compression. Data deduplication works by eliminating

duplicate data within the files and between files. In data

deduplication, a chunking algorithm is one of the vital parts to

achieve high duplicate elimination. By choosing the correct

chunking method, we can save time and space. Data

deduplication can be applied on cloud storage, virtual disk

images, memory, and network traffic. One of the applications

of data deduplication is remote differential compression.

Remote differential compression does not save space but it

saves network bandwidth and time by sending only the parts

that are not available to the receiver as stated by Teodosio et.

al. Additionally, Ruppin et. al. proposed a data synchronization

system that uses chunking for data synchronization across

multiple devices. Chunking algorithms can be categorized into

two categories: (i) whole file chunking and (ii) block chunking.

Whole file chunking means the whole file is treated as one

chunk, while block chunking means the file is split into multiple

chunks. When chunking a file into blocks or chunks, the chunk

size can be fixed-sized or variable-sized. Fixed-sized chunking

is fast and not resistant to byte insertion or shifting. When the

file is shifted by a byte insertion or deletion, the chunks will

become completely different chunks and undetectable by the

chunk duplicate search. Content Defined Chunking (CDC)

solves this problem by chunking the file into variable-sized

chunks. CDC algorithms find the cut point by using internal

features of the file. Therefore, when the file is shifted, only

several chunks are affected. CDC has a higher probability of

eliminating duplicates within the files and between files

compared to fixed-sized chunking.

One of the oldest CDC algorithms is Rabin [4] based CDC

algorithm. It finds the cut-point by using Rabin rolling hash.

Rabin rolling hash uses sliding window and every time the

window is moving, a hash value is calculated. When the hash

value matches a predefined value, it uses the window position

for the hash value as a cut-point. Since the checksum is

calculated based on polynomials over a finite field, the old

checksum can be used to calculate the new checksum when the

window slides.

Data Deduplication in Cloud by Chunking

R. Saranya1, S. Vidhya2, M. Muthumari3, B. Sangeerthana4

1Assistant Professor, Department of Computer Science and Engineering, P.S.R. Rengasamy College of

Engineering for Women, Sivakasi, India
2,3,4UG Student, Department of Computer Science and Engineering, P.S.R. Rengasamy College of Engineering

for Women, Sivakasi, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

725

3. Motivation

CDC offers more benefits than fix-sized chunking. However,

CDC process is slightly more time-consuming which limits the

use of CDC algorithms on latency-critical applications and on

devices with limited processing capability such as mobile

devices and Internet of Things (IoT) devices. In our previous

work, we used Rabin based chunking algorithm for the

deduplication system to eliminate duplicate data. We found out

that the main drawback of using CDC algorithms in the mobile

application is its large processing time. Before we discuss and

compare various CDC algorithms, we would like to state the

following criteria that can be used to compare CDC algorithms,

which is used by Zhang et. al. in:

 Content dependent: The algorithm should define the

cut point based on the internal features of the file,

which makes it resistant against byte shifting and

allows the algorithm to find duplicate chunks between

two or more files.

 Low chunk sizes variance: The chunks produced by

the algorithm should have low chunk variance because

it might affect the deduplication efficiency. To limit

the chunk variance, we can add a limit on the

maximum or minimum size of the chunks. However,

this will affect the content dependent properties of the

algorithm and make the algorithm vulnerable against

byte shifting.

 Ability to eliminate low entropy strings: Low entropy

strings are strings which consist of repetitive bytes or

patterns. When it encounters strings with low entropy

or low variance, it is Prefer able for the algorithm to

be able to eliminate the redundancy within the string.

 High throughput and duplicate detection: The

algorithm should have a good balance between

deduplication performance and computational

overhead.

Local Maximum Chunking (LMC) [3] is a CDC algorithm

that compares bytes with bytes as a number to find the cut point.

LMC has a resistance against byte changing and byte shifting.

When there is a change in the chunk and the change has a value

less than the maximum, it will only affect that chunk. The main

drawback of this method is the requirement of rechecking all

the bytes within the window when the window slides. This

drawback makes Rabin-based CDC algorithms faster than LMC

method because when the sliding window of Rabin slides, it

only needs to subtract the most left byte and add the new byte

into the hash. However, LMC needs all of the bytes in the

window every time it slides the window. Rabin based CDC

algorithm uses polynomial over a finite field and a sliding

window to calculate the hash [4].

Rabin-based CDC algorithms have a few disadvantages due

to the use of the hash. It is time-consuming because of the hash

calculation, and changing a byte in the chunk has a high

probability of changing the cut-point as it might create a

different hash value. It also has a large chunk variance because

of the higher probability of having a long chunk [3], [5]. In

order to limit the chunk variances, we can use a limit on the

chunk size. However, this will reduce the resistance of the

algorithm against byte shifting.

Fig. 1. Original data

Local Maximum Chunking (LMC) [3] is a CDC algorithm

that compares bytes with bytes as a number to find the cut point.

LMC has a resistance against byte changing and byte shifting.

When there is a change in the chunk and the change has a value

less than the maximum, it will only affect that chunk. The main

drawback of this method is the requirement of rechecking all

the bytes within the window when the window slides. This

drawback makes Rabin-based CDC algorithms faster than LMC

method because when the sliding window of Rabin slides, it

only needs to subtract the most left byte and add the new byte

into the hash. However, LMC needs all of the bytes in the

window every time it slides the window.

AE is similar to the local maximum method because it treats

a byte as a number. Treating the chunk as the windows allows

AE to have a lower computational overhead than the LMC

method. However, unlike the LMC method, AE puts the

extreme-valued byte in the middle of the chunk. This makes AE

less resistant to byte shifting. When there is a byte inserted at

the fixed window, it will affect the chunk and the next chunk

and might affect subsequent chunks. If we put the extreme-

valued byte at the boundary of the chunk, inserting a byte will

not affect the next chunk. Thus, it minimizes the number of

affected bytes. AE is capable of eliminating low entropy strings

because AE has maximum chunk size. AE reach its maximum

chunk size when it processes a long increasing sequence. The

maximum chunk size is 256 bit is the length of the fixed

window.

Fig. 2. The pseudo code for AE chunking

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

726

4. Rapid Asymmetric Maximum Algorithm (RAM)

Rapid Asymmetric Maximum Algorithm (RAM and analyze

the chunking properties of the algorithm. With a goal of

achieving low computational overhead and byte shift-resistant

algorithm, we proposed a boundary version of AE, called RAM.

RAM is similar to AE because it also uses two windows: fixed

and variable-sized windows. The placement of the windows is,

however different from AE. In RAM, the fixed-sized window

is located at the beginning of the chunk and followed by the

variable-sized window and the maximum-valued byte the

maximum-valued byte is included in the chunk at the end of the

chunk in the case of RAM. The algorithm works by searching a

byte with the maximum value in the fixed-sized window. If the

byte next to the fixed-sized window has larger value than the

one in the fixed-sized window, the byte is used as the

maximum-valued byte and the cut-point is found. Otherwise,

the algorithm moves to the next byte until it finds the larger byte

as illustrated in the pseudo window.

The chunking used in our proposed RAM scheme. RAM

reduces the computation time by searching the byte that is equal

or larger than the current maximum value, while AE process all

the bytes smaller or equal than the maximum-valued bytes.

Since the probability that the next byte is smaller than the

current maximum value is higher than the probability that the

next byte is larger than the current maximum value, RAM

enters the first condition less frequently than AE. This lowers

RAM’s overhead.

Fig. 3. The pseudo code for RAM chunking

A. Low chunk sizes

variance and the ability to eliminate low entropy strings.

RAM has a low probability of long chunk as explained in

However, low entropy string is a problem for RAM. When the

low entropy string starts at the beginning of the fixed-sized

window, RAM is able to eliminate the low entropy string

because the condition for a cut point is that the maximum-

valued byte must be equal to or larger than the maximum in the

fixed window. On the contrary, when there is a byte larger than

any value in the low entropy string is in the fixed-sized window,

the chunk size can become infinite because it cannot find a byte

with larger value. To solve this, we can add a limitation on the

maximum chunk size. High throughput: RAM has a low

performance overhead. To prove that, we use the worst case of

RAM, based on the number of comparisons. RAM uses while

loop which takes comparisons and two additional conditional

branches which add comparisons, where is the length of the

input data stream in bytes. comparisons in the worst case

scenario. Since the probability of finding a byte larger than the

max is smaller than finding a smaller byte, on the average case

it uses comparisons. In the application, the probability that the

value of the maximum byte in the fixed window being big is

higher than the probability that the byte being small. We prove

this by assuming that the data entries are random Splitting RAM

into two parts: the fixed window part and the variable-sized

part, where the fixed window part’s length is and the variable.

sized part’s minimum size is one.

B. Authentication

The process of identifying an individual usually based on a

username and password. In security systems, Authentication

merely ensures that the individual is who he or she claims to be,

but says nothing about the access rights of the individual. In

authentication module is used to security purpose. Here this

module only for user, after registration user enter the username

and password. This input is check into the database, whether

input is correct or not. If input is correct then allow to next

process otherwise consider as a non-authenticated user.

C. Register

In this Module If he is a new user he needs to enter the

required data to register the form and the data will be stored in

server for future authentication purpose.

D. File uploading:

In this scheme user upload the files in the cloud server. Cloud

can store multiple files. Collect several file from the stored in

the Cloud Server.

E. Chunking algorithm

Chunking Algorithm In data deduplication, the basic idea is

to split a file into blocks and applies hash functions to compute

hash values. To check data duplication the client sends the hash

key list to the server. The hash key for each chunk is used to

determine if that chunk exists in the multiple locations by

comparing hash keys. If there are same hash keys on another

location, we assume that the chunk is duplicated. Therefore, we

can prevent duplicated data blocks to be transferred. Generally,

the chunking algorithms are divided into two; fixed length

chunking and variable length chunking. The fixed length

chunking approach achieves very fast data deduplication result

but the performance is not good; because boundary shift

problem degrades the deduplication performance. On other

hand, variable length chunking achieves high degree of

performance while causing high computation overhead and

longer processing time.

F. De-duplication

Cloud can store and retrieve file. De-duplication has a

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

727

removing duplicate file. Its will find out duplicate file.

Deduplication The Admin is the data owner who performs

deduplication by checking if the contents of two files are the

same and stores only one of them. Here the data owner upload,

download and update the files. Then the deduplication is

performed by applying the RAM Algorithm

5. User authentication

A. Registration

If you are the new user going to login into the application

then you have to register first by providing necessary details.

After successful completion of sign up process, the user has to

login into the application by providing username and exact

password.

B. Login

The user has to provide exact username and password which

was provided at the time of registration, if login success means

it will take up to main page else it will remain in the login page

itself.

C. View details

In this scheme user after the successful login goes to view the

no of files in the cloud server. Each service has different set of

files. This cloud server has collection of server which uniquely

connected with the cloud server.

D. File downloading

In this scheme User uses to download the files in the cloud

server. Each service has different set of files. User can collect

several file by downloading, which are stored in the Cloud

Server. This cloud server has collection of server cluster which

uniquely connected with the cloud server

6. Performance evaluation

We analyzed the chunking algorithms based on the properties

The properties of the resulting chunks from each algorithm are

discussed in we present our test results related to the chunking

throughput and duplicate data found in the datasets.

The performances of the following algorithms have been

evaluated:

 Asymmetric extremum (AE)

 Our proposed algorithm (RAM)

 RAM with limit on maximum chunk size (RAML)

 Local maximum chunking (LMC)

 Rabin based chunking algorithm (Rabin)

As can be seen in the above list, we added RAM with a limit

in the test. The purpose of adding RAM with the limit is to show

the performance of RAM when a limit is applied to the

maximum size of a chunk. Additionally, it also shows the

improvement of RAM when the chunk variance is reduced. The

performance comparison consists of three datasets. The datasets

used in the tests are chosen to represent the use cases of the

chunking algorithm. The first dataset is the compilation of

multiple Linux distributions which have a lot of duplicate data

in different locations in each file. The second dataset consists

of 10 H.264 encoded videos of length 23 minutes each to

simulate deduplication of media files in cloud storage. Lastly,

the third dataset contains TCP dump files from to represent

deduplication network traffic. The dumps contains 15 GB of

data. However, we only used 9 GB of the data because of the

limitation of our test system. The chunks metadata consumes a

lot of memory and causes the program to stop working when

the total number of chunks went over 10 million of chunks. We

did not optimize the chunks management because our focus in

this performance evaluation is the chunking performance.

A. Convergent encryption technique

A user derives a convergent key from each original data copy

and encrypts the data copy with the convergent key. The key

generation algorithm that maps a data copy to a convergent key.

The symmetric encryption algorithm that takes both the

convergent key and the data copy as inputs and then outputs a

ciphertext. The decryption algorithm that takes both the

ciphertext and the convergent key as inputs and then outputs the

original data copy and the tag generation algorithm that maps

the original data copy and outputs a tag.

B. Component diagram

Components are wired together by using an assembly

connector to connect the required interface of one component

with the provided interface of another component. This

illustrates the service consumer - service provider relationship

between the two components. An assembly connector is a

"connector between two components that defines that one

component provides the services that another component

requires. An assembly connector is a connector that is defined

from a required interface or port to a provided interface or port.

When using a component diagram to show the internal structure

of a component, the provided and required interfaces of the

encompassing component can delegate to the corresponding

interfaces of the contained components

Fig. 4. Collaboration diagram

A collaboration diagram show the objects and relationships

involved in an interaction, and the sequence of messages

exchanged among the objects during the interaction. The

collaboration diagram can be a decomposition of a class, class

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

728

diagram, or part of a class diagram. It can be the decomposition

of a use case, use case diagram, or part of a use case diagram.

The collaboration diagram shows messages being sent between

classes and object (instances). A diagram is created for each

system operation that relates to the current development cycle

(iteration).

An object diagram in the Unified Modeling Language

(UML) is a diagram that shows a complete or partial view of

the structure of a modeled system at a specific time. An Object

diagram focuses on some particular set of object instances and

attributes, and the links between the instances. A correlated set

of object diagrams provides insight into how an arbitrary view

of a system is expected to evolve over time. Object diagrams

are more concrete than class diagrams, and are often used to

provide examples, or act as test cases for the class diagrams.

Only those aspects of a model that are of current interest need

be shown on an object diagram.

 Fig. 5. System architecture

7. Application

A. CTRL’s real cloud

The CtrlS Real Cloud has a multi-layered management

model. The cloud controller server enables everything, from

system architecture to VM root access, to be managed via the

user interface and API. Real Cloud enables you to put up

applications and manage them, all remotely and with utmost

ease.

B. Cloud layer services

Discover the promise of cloud, not the compromises. Cloud

Layer includes virtual servers, remote storage and a robust

content delivery network that leverage our core advantages and

longtime leadership in automated, on-demand, self-managed

infrastructure.

8. Conclusion

In this paper, the notion of authorized data deduplication was

proposed to protect the data security by including differential

privileges of users in the duplicate check. In which the

duplicate-check tokens of files are generated by the private

cloud server with private keys.

References

[1] Y.-M. Huo, H.-Y. Wang, L.-A. Hu, and H.-G. Yang, “A cloud storage

architecture model for data-intensive applications,” in Proc. Int. Conf.

Comput. Manage., May 2011, pp. 1–4.

[2] L. B. Costa and M. Ripeanu, “Towards automating the configuration of a

distributed storage system,” in Proc. 11th IEEE/ACM Int. Conf. Grid

Comput., Oct. 2010, pp. 201–208.

[3] H. Ohsaki, S. Watanabe, and M. Imase, “On dynamic resource

management mechanism using control theoretic approach for wide-area

grid computing,” in Proc. IEEE Conf. Control Appl., Aug. 2005, pp. 891–

897.

[4] H. Dezhi and F. Fu, “Research on self-adaptive distributed storage

system,” in Proc. 4th Int. Conf. Wireless Commun. Netw. Mobile

Comput., Oct. 2008, pp. 1–4.

[5] J. Wang, P. Varman, and C.-S. Xie, “Avoiding performance fluctuation

in cloud storage,” in Proc. Int. Conf. High Performance Comput., Dec.

2008, pp. 1–9.

[6] C.-Y. Chen, K.-D. Chang, and H.-C. Chao, “Transaction pattern based

anomaly detection algorithm for IP multimedia subsystem, IEEE Trans.

Inform. Forensics Security, vol. 6, no. 1, pp. 152–161, Mar. 2011.

[7] G. Urdaneta, G. Pierre, and M. Van Steen, “A survey of DHT security

techniques,” ACM Comput. Surveys (CSUR), vol. 43, no. 2, pp. 8:1–8:49,

Jan. 2011.

[8] H. He and L. Wang, “P&P: A combined push-pull model for resource

monitoring in cloud computing environment,” in Proc. IEEE 3rd Int.

Conf. Cloud Comput., Jul. 2010, pp. 260–267.

[9] X. Sun, K. Li, and Y. Liu, “An efficient replica location method in

hierarchical P2P networks,” in Proc. 8th IEEE/ACIS Int. Conf. Comput.

Inform. Sci., Jun. 2009, pp. 769–774.

[10] T.-Y. Wu, W.-T. Lee, and C. F. Lin, “Cloud storage performance

enhancement by real-time feedback control and de-duplication,” in Proc.

Wireless Telecommun. Symp., Apr. 2012, pp. 1–5.

