
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

598

Abstract: With the popularity of cloud computing, mobile

devices can store or retrieve personal data from anywhere at any

time. Consequently, the data security problem in mobile cloud

becomes more severe and prevents further development of mobile

cloud. There are related studies that have been conducted to

improve the cloud security. However, most of them are not suitable

for mobile cloud since mobile devices only have limited computing

resources and power. Solutions with low computational overhead

are in need for mobile cloud applications. In this paper, we

propose a secure data sharing scheme (SDSS) for mobile cloud

computing. It adopts IBE (Identity Based Encryption), an access

control technology used in normal cloud environment, but changes

the structure of access control tree to make it suitable for mobile

cloud environments. SDSS moves a large portion of the

computational intensive access control tree transformation in IBE

from mobile devices to external proxy servers. Furthermore, to

reduce the user revocation cost, it introduces attribute description

fields to implement lazy-revocation, which is a thorny issue in

program based IBE systems. The experimental results show that

SDSS can effectively reduce the overhead on the mobile device side

when users are sharing data in mobile cloud environments.

Keywords: Java1.7, jsp, servlet, My SQL, Glass Fish.

1. Introduction

Various cloud mobile applications have been widely used. In

these applications, people (data owners) can upload their

photos, videos, documents and other files to the cloud and share

these data with other people (data users) they like to share. CSPs

also provide data management functionality for data owners.

Personal data files are important to users, so data admins are

allowed to choose whether to make their data files public or can

only be shared with specific data users. Clearly, data privacy of

the personal important data is a big concern for many data

owners. The state-of-the-art privilege management/access

control mechanisms provided by the CSP are not sufficient.

They cannot meet all the requirements of data owners. First,

when people upload their data files onto the cloud, they are

leaving the data in a place where is out of their control, and the

CSP may spy on user data for its commercial interests and/or

other reasons. Second, people have to send password to each

data user if they only want to share the encrypted data with

certain users, which is very difficult to use. To simplify the

privilege management, the data owner can divide data users into

different groups and send password to the groups which they

want something to share the data. However, this approach

requires fine-grained access control. In both cases, password

management is a big issue. Apparently, to solve the above

problems, personal important data should be encrypted before

uploaded onto the cloud so that the data is secure against the

CSP. However, the data encryption brings new problems. How

to provide efficient access control mechanism on ciphertext

decryption so that only the authorized users can access the

plaintext data is challenging. In addition, system must offer data

owners effective user privilege management capability, so they

can grant or revoke data access privileges easily on the data

users. There have been related researches on the issue of data

access control over ciphertext. In these researches, they have

the following common assumptions. First, the CSP is

considered honest and curious. Second, all the important data

are encrypted before uploaded to the Cloud.

Third, user authorization on particular data is achieved

through encryption/decryption key distribution. In general, we

can divide these approaches into four categories: simple cipher

text access control, hierarchical access control, access control

based on fully homomorphic encryption and access control

based on attribute-based encryption (ABE). All these proposals

are designed for non-mobile cloud environment. It consumes

huge amount of storage and computation resources, which are

not available for mobile devices. According to the experimental

results in, the basic ABE operations take much longer time on

mobile devices than laptop or desktop computers. It is at least

27 times longer to execute on a smart phone than a personal

computer (PC). It means that an encryption operation which

takes 1 minute on a Personal computer will take a half an hour

to finish on a mobile device.

Furthermore, current solutions don’t solve the user privilege

change problem very well. Such an operation could result in

very high revocation cost. This is not applicable for mobile

devices as well. Clearly, there is no proper solution which can

effectively solve the secure data sharing problem in mobile

cloud. As the mobile cloud becomes more and more popular,

providing an efficient secure data sharing mechanism in mobile

cloud is in urgent need.

2. Literature survey

Gentry C, Halevi S. Implementing Gentry’s Fully-

A Robust Identity based System for Secure Data

Sharing in Cloud Computing

Niranjini1, S. Balanarayanan2, A. Ajay Kumar3, H. Arvind4, M. P. Gokul Balaji5

1Assistant Professor, Dept. of Computer Science and Engg., Sri Eshwar College of Engg., Coimbatore, India
2,3,4,5Student, Dept. of Computer Science and Engg., Sri Eshwar College of Engg., Coimbatore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

599

Homomorphic Encryption Scheme. In: Advances in

Cryptology–Eurocrypt 2011. Berlin, Heidelberg: Springer

Press, Pp. 129-148, 2011.

We describe a working implementation of a variant of

Gentry’s fully homomorphic encryption scheme (STOC 2009),

similar to the variant used in an earlier implementation effort

by Smart and Vercauteren (PKC 2010). Smart and Vercauteren

implemented the underlying “somewhat homomorphic”

scheme, but were not able to implement the bootstrapping

functionality that is needed to get the complete scheme to work.

We show a number of optimizations that allow us to implement

all aspects of the scheme, including the bootstrapping

functionality. Our main optimization is a key-generation

method for the underlying somewhat homomorphism

encryption, that does not require full polynomial inversion. This

reduces the asymptotic complexity from ˜O(n2:5) to ˜O (n1:5)

when working with dimension-n lattices (and practically

reducing the time from many hours/days to a few

seconds/minutes). Other optimizations include a batching

technique for encryption, a careful analysis of the degree of the

decryption polynomial, and some space/time trade-offs for the

fully-homomorphism scheme. We tested our implementation

with lattices of several dimensions, corresponding to several

security levels. From a “toy” setting in dimension 512, to

“small,”“medium,” and “large” settings in dimensions 2048,

8192, and 32768, respectively. The public-key size ranges in

size from 70 Megabytes for the “small” setting to 2.3 Gigabytes

for the “large” setting. The time to run one bootstrapping

operation (on a 1-CPU 64-bit machine with large memory)

ranges from 30 seconds for the “small” setting to 30 minutes for

the “large” setting.

A. Disadvantage

 lattice problems

 sparse-subset-sum problem



Brakerski Z, Vaikuntanathan V. Efficient Fully

Homomorphic Encryption from (Standard) Lwe. In:

Proceeding of IEEE Symposium On Foundations of Computer

Science. California, Usa: IEEE Press, Pp. 97-106, Oct. 2011.

We present a fully homomorphic encryption scheme that is

based solely on the (standard) learning with errors (LWE)

assumption. Applying known results on LWE, the security of

our scheme is based on the worst-case hardness of \short vector

problems" on arbitrary lattices. Our construction improves on

previous works in two aspects: 1. We show that \somewhat

homomorphic" encryption can be based on LWE, using a new

re- linearization technique. In contrast, all previous schemes

relied on complexity assumptions related to ideals in various

rings. 2. We deviate from the \squashing paradigm" used in all

previous works. We introduce a new dimension-modulus

reduction technique, which shortens the cipher texts and

reduces the decryption complexity of our scheme, without

introducing additional assumptions. Our scheme has very short

cipher texts and we therefore use it to construct an

asymptotically efficient LWE-based single-server private

information retrieval (PIR) protocol. The communication

complexity of our protocol (in the public-key model) is k _

polylog(k) + log jDBj bits per single-bit query (here, k is a

security parameter).

B. Disadvantages

 Short vector problems

 Worst-case hardness of problems on ideal lattices.

 Data flow Diagram.

3. Data flow diagram

Fig. 1. Data flow diagram

4. System modules

1) Module Description

 Certification of files

 Privacy protection

 Request generation

 Forward security

 Access the files

2) Certification of files

Cloud storage is based on highly virtualized infrastructure

and is like broader cloud computing in terms of accessible

interfaces, near-instant elasticity and scalability, multi-tenancy,

and metered resources. Certification of files refers to uploading

the files in the cloud. Data Owner can upload the files into the

cloud. Data owner upload the files in an Encrypted format in

the cloud for providing more security to the particular data.

3) Privacy protection

Data owner uploads the data or a file only in an encrypted

format for providing security. Using X-OR key encryption

algorithm, a key will be randomly generated for uploading the

data. (key is also in an encrypted format). When the data

owner uploads the file into the cloud, data owner can hide some

data or a file (data which the owner doesn’t want to a public

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

600

data) among all the files in the cloud/server. Hence user cannot

view the hidden files in the server. Whenever data owner wants

to display the data, he changes the hidden file into the unmasked

data.

4) Request generation

User can view all the files or except the hidden files or data

in the server. If any user wants to access the particular file or

data in the server, then he sends a request to the particular data

owner. User cannot access the data or a file in the cloud,

without the permission of the data owner. Hence data owner can

view all the user requests, and verify it. Then the user request

will be forwarded to the Trusted Third Party Authenticator and

the TTP will send the authentication to the user.

5) Forward security

The Authority people is able to view the list of uploader,

users in this case he has the another option if he need to add the

uploader he need to add otherwise delete and also he is able to

give the keys for the requests from the user and uploader.

6) Access the files

The user can able to view the files if he wants to download

the file he need to send the request to Authority after receiving

the key he need to download.

5. Conclusion

In recent years, many studies on access control in cloud are

based on attribute-based encryption algorithm (ABE).

However, traditional ABE is not suitable for mobile cloud

because it is computationally intensive and mobile devices only

have limited resources. In this paper, we propose LDSS to

address this issue. It introduces a novel LDSS-CP-ABE

algorithm to migrate major computation overhead from mobile

devices onto proxy servers, thus it can solve the secure data

sharing problem in mobile cloud. The experimental results

show that LDSS can ensure data privacy in mobile cloud and

reduce the overhead on users’ side in mobile cloud.

References

[1] Gentry C, Halevi S. Implementing gentry’s fully-homomorphic

encryption scheme. in: Advances in Cryptology–EUROCRYPT 2011.

Berlin, Heidelberg: Springer press, pp. 129-148, 2011.

[2] Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption

from (standard) LWE. in: Proceeding of IEEE Symposium on

Foundations of Computer Science. California, USA: IEEE press, pp. 97-

106, Oct. 2011.

[3] Qihua Wang, HongxiaJin. "Data leakage mitigation for discertionary

access control in collaboration clouds". the 16th ACM Symposium on

Access Control Models and Technologies (SACMAT), pp.103-122, Jun.

2011.

[4] Adam Skillen and Mohammad Mannan. On Implementing Deniable

Storage Encryption for Mobile Devices. the 20th Annual Network and

Distributed System Security Symposium (NDSS), Feb. 2013.

[5] Wang W, Li Z, Owens R, et al. Secure and efficient access to outsourced

data. in: Proceedings of the 2009 ACM workshop on Cloud computing

security. Chicago, USA: ACM pp. 55-66, 2009.

[6] Maheshwari U, Vingralek R, Shapiro W. How to build a trusted database

system on untrusted storage. in: Proceedings of the 4th conference on

Symposium on Operating System Design & Implementation-Volume 4.

USENIX Association, pp. 10-12, 2000.

[7] Kan Yang, XiaohuaJia, Kui Ren: Attribute-based fine-grained access

control with efficient revocation in cloud storage systems. ASIACCS

2013, pp. 523-528, 2013.

[8] Crampton J, Martin K, Wild P. On key assignment for hierarchical access

control. in: Computer Security Foundations Workshop. IEEE press, pp.

14-111, 2006.

[9] Shi E, Bethencourt J, Chan T H H, et al. Multi-dimensional range query

over encrypted data. in: Proceedings of Symposium on Security and

Privacy (SP), IEEE press, 2007. 350-364.

