
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

531

Abstract: This paper provides an efficient study of the

implementation of parallel image processing using CUDA on

NVIDIA GPU framework. By utilizing CUDA as a computational

resource, it provides significant acceleration in the computations

of different image processing algorithm. Specifically, this

approach demonstrates the efficiency by a parallelization and

optimization of the algorithm. It also provides performance

comparison with or without GPU.

Keywords: Image Processing, CUDA (Compute Unified Device

Architecture), GPU(Graphics Processing Unit), Parallel

Computing.

1. Introduction

Nowadays, computers process a huge amount of data [1]. For

real time image processing techniques, high performance is

required. It is obvious for such calculations; the performance of

common personal computers is insufficient. To handle this

issue, parallel processing of the images is found to be the most

effective approach. For this efficient and quick implementation

of image processing parallelly, there are several tools and

techniques available such as CUDA, GPU, PCT of

MATLABTM, Open-CV AND Open-CL [2].

Parallel computing can be implemented in central processor

(CPU) [3] as well as in graphical processor (GPU) [4].

Recently, graphic processing units have evolved into an

extremely powerful computational resource. For example, The

NVIDIA GeForce GTX 280 is built on a 65nm process, with

240 processing cores running at 602 MHz, and 1GB of GDDR3

memory at 1.1GHz running through a 512-bit memory bus. Its

Peak processing power is 933 GFLOPS [5], billions of floating-

point operations per second, in other words. As a comparison,

the quad-core 3GHz Intel Xeon CPU operates roughly 96

GFLOPS [6]. The annual computation growth rate of GPUs is

approximately up to 2.3x. In contrast to this, that of CPUs is

1.4x [6]. At the same time, GPU is becoming cheaper and

cheaper.

As a result, there is strong desire to use GPUs as alternative

computational platforms for acceleration of computational

intensive tasks beyond the domain of graphics applications.

This paper is divided into six sections. Section II describes the

literature survey done for the research purpose, Section III

describes implementation using GPU, Section IV describes the

conclusion and future scope.

2. Literature survey

In [2], Sanjay Saxena has said the problem of processing is

that it is generally time consuming. So parallel computing

provides an efficient and convenient way to address the issue.

There are various tools and techniques used by different

researchers for implementing parallel image processing like

PVM MATLAB using Mex files, Multithreading and CUDA

programming with GPU. It is found that all techniques provide

good speed and parallel efficiency but in multithreading

technique, it needs more data to test with different performance

measuring parameters, while in CUDA it needs to be tested

variety of images with large dimension.

In [7], Yang has said that the graphics card that support

CUDA are GeForce8-series, QUADRO and TESLA. They are

specifically design to run for non-graphic purposes. There

software development kit includes libraries, debugging,

profiling and compiling tools. In [4], Owens J D has said that in

NVIDIA GPU computing model, CPU and GPU work together

in a heterogenous co-processing computing model. It provides

portability, programmability and flexibility. It condensed

power consumption.

In [8], Placido Salvatore has done median filtering by using

GPU. They have used different CUDA fundamentals and

methods for implementing median filtering and found that it is

possible to get gain in response time with an access level GPU,

allowing real-time image and audio filtering. Though, the

bottleneck of these systems is the PCI Express bus, for devoted

and straight bus throughout GPU/RAM and CPU/ GPU the

response time is condensed.

In [9], S. Sharma has implemented first order edge detectors

such as Roborts, Sobel and Prewitt. They perfectly utilized

CUDA’s huge amount of threads on GPU Ge Force GTX 860M

and got significant results. They have tested 60 images

consisting three different size (512 X 512, 1024 X 1024, 3072

X 3072) and found speed up around hundred times in terms of

percentage.

3. Implementation

 GPU: GPUs have evolved to the point where many real-

Efficient Batch Processing of Satellite Imagery

using Open Source Tools

Ankita Mishra1, Bhushan Dhapodkar2, Sheetal Meshram3, Sneha Bagde4, Praveen Sen5

1,2,3,4Student, Dept. of Information Technology, St. Vincent Pallotti College of Engg. & Tech., Nagpur, India
5Asst. Professor, Dept. of Information Technology, St. Vincent Pallotti College of Engg. & Tech., Nagpur, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

532

world applications are easily implemented on them and run

significantly faster than on multi-core systems. Future

computing architectures will be hybrid systems with

parallel-core GPUs working in tandem with multi-core

CPUs. The graphics processing units are extremely parallel,

rapidly gaining maturity as a powerful device for

computationally demanding applications. The GPU’s

performance and potential will be the future of computing

systems [12]. A GPU is mainly designed for some particular

type of applications with the following characteristics;

Where Computational requirements are large: GPU must

deliver an enormous amount of computing power to cover

the requirements of complex real-time applications.

Parallelism is significant: The graphics pipeline system

architecture is appropriate for parallelism. The architectural

comparison of CPU with GPU is more suitable for stream

computations. They can process data elements in parallel

with SIMD & MIMD capability. So a new technique called

GPGPU (General Purpose computation on GPU) emerged

and in recent years has become a hot research topic in not

only graphics domain but also in general computations [10].

GPGPU is a combination between hardware components

and software that allows the use of a traditional GPU to

perform computing tasks that are extremely demanding in

terms of processing power [11].

Fig. 1. Architecture of GPU

 Architecture of GPU: The research carried out on NVIDIA

based GPU hardware using CUDA, a general purpose

parallel computing architecture. The architecture of the

GPU has developed in a different direction than that of the

CPU. The design of the GPUs is forced by the fast growing

video game industry that exerts marvelous economic

pressure for the ability to perform a massive number of

floating-point calculations per video frame in advanced

games. The general philosophy for GPU design is to

optimize for the execution of huge number of threads.

Figure 1 shows the architecture of a typical GPU today. It is

organized into 16 highly threaded streaming

Multiprocessors (SMs). A pair of SMs forms a building

block. Each SM has 8 streaming processors (SPs), for a total

of 128 (16*8) SPs. Each SP has a multiply-add (MAD) unit

and an additional multiply (MUL) unit. Each GPU currently

comes with 4 megabytes of DRAM. These DRAMs differ

from the system memory DRAMs on the motherboard in

that they are essentially the frame buffer memory that is

used for graphics. For graphics applications, they hold high-

definition video images, and texture information for 3D

rendering as in games. But for computing, they function like

very high bandwidth off-chip cache, though with somewhat

more latency regular cache or system memory.

Programming model of GPU: As shown in Fig. 2, the workflow

of a typical scenario consists of 4 steps:

 Copy processing data

 Instruct the processing

 Execute parallel in each core

 Copy the result

Firstly, the processing data is copied from the Main Memory

to the GPU Memory. From CUDA version 6.0+ a new

improvement has been introduced called Unified Memory.

Unified Memory hides the fact that CPU memory and GPU

memory are physically separated: programming becomes easier

and performance increases because of how CUDA migrates the

data using asynchronous streams. Once the data is copied, the

CPU instructs the process to the GPU about the computation to

be off loaded. The computation can now begin. CUDA devices

also offer shared memory among threads which acts as a cache

which is roughly 100x faster than global memory. Lastly, the

results are gathered and copied back to the Main Memory. As

the reader may realize, the loading and gathering time could be

critical to determine whether the parallel computing could

outstand the CPU.

Fig. 2. Workflow of NVIDIA CUDA

Parallel computing is the simultaneous use of multiple

computing resources in order to solve a computational problem.

To maximize the benefits of parallel computing, a task should

consist of several independent subtasks called as threads. In

order to organize threads running in parallel on the GPU,

CUDA organizes them into logical blocks as shown in figure 3.

Each block is mapped onto a multiprocessor in the GPU.

Fig. 3. Thread and block structure of CUDA

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

533

The proposed system will process different kinds of image.

The main aim of our system is to increase the speed of

processing the image i.e. increasing the efficiency as well as to

process multiple images simultaneously.

Experimental Results: In order to relate the performance of

GPU with CPU implementations, the experimental Settings are

as follows:

CPU: Intel(R) Core (TM) i5-4590 at 3.30 GHz and 8GB of

memory;

GPU: NVIDIA GeForce 970 GTX with 1664CUDA

cores,8GB of memory, 1050MHZ clock and CUDA version of

10.1.105.

System: Windows 10 with 64-bit OS.

Images comprise millions of pixel and each pixel information

is independent of its neighboring pixel. More specifically, this

paper focuses on Compute Unified Device Architecture as its

parallel programming platform and observes the possible gain

in time which can be attained to process the single or multiple

images of pixel size 10980 x 10980. The timing for reading,

calculation and writing is provided in the figure. The input

image is in multiple bands(RGB) and the output image is in

gray band. The result shows that the execution on GPU can get

a speedup as compared with the CPU.

The processed images are given below:

Fig. 4. Input image

Fig. 5. Output Image

Fig. 6. CPU Timing of processing Image

Fig. 7. GPU Timing of processing Image

4. Conclusion and future scope

The use of parallel computing with the GPU can significantly

accelerate the implementation of program. The degree of

parallelism and the acceleration is determined by the number of

independent computations performed simultaneously.

However, performance gain varies with the size of the images,

size and shape of the used structuring element. Huge

performance gain is accomplished with larger size of images

with larger numbers of CUDA cores. From timing given above,

we can conclude that the GPU implementation is faster than the

CPU implementations. For future perspective we can

implement shared memory parallel computation through an

interconnection network for fastest computing.

References

[1] Korovin A S, Skirnevsky I P and Abdrashitova M A 2015 Web-

Application for Real-Time Big Data Visualization of Complex Physical

Experiments Proc. The 2015 Int. Siberian Conf. On Control and

Communications (SIBCON) (Omsk), vol. 1, (Novosibirsk: IEEE Russia

Siberia Section) pp. 1-5.

[2] Sanjay Saxena, Shiru Sharma, Neeraj Sharma, “Study of Parallel Image

Processing with the Implementation of HGW Algorithm using CUDA on

NVIDIA’S GPU Framework,” Proc. of the World Congress on

Engineering, 2017, Vol. 1, WCE 2017, July 5-7, 2017, London, U.K.

[3] Ivy K L 1988 A shared virtual memory system for parallel computing Int.

Conf. on Parallel Computing pp. 94-101.

[4] Owens J D, Houston M, Luebke D, Green S, Stone J E, and Phillips J C

2008 GPU computing Proc. of the IEEE 96(5) 879-899.

[5] NVIDIA, CUDA Programming Guide Version 2.3. NVIDIA Corporation:

Santa Clara, California Intel, Quad-Core Intel® Xeon® Processor 5400

Series 2008, Intel Corporation: Santa Clara, California (2008),

http://gpgpu.org, General-Purpose Computation on Graphics Hardware.

[6] Allard, J., Raffin, B.: A shader-based parallel rendering framework. In:

Visualization, 2005, VIS 2005, pp. 127–134. IEEE, Los Alamitos (2005).

[7] Yang, Z., Zhu, Y., Pu, Y.: Parallel Image Processing Based on CUDA,

IEEE, Los Alamitos, 2008.

[8] Placido Salvatore Battiato, “High Performance Median Filtering

Algorithm Based on NVIDIA GPU Computing,” 2016.

[9] S. Saxena, N. Sharma, S. Sharma, “GPU constructed image segmentation

using first order edge detection operators in CUDA environment,” in

Journal of Chemical and Pharmaceutical Research, vol. 8(2), 2016, pp.

379 – 387.

[10] Enhua Wu, University of Macau; Youquan Liu, Chinese Academy of

Sciences, China; “Emerging Technology about GPGPU”, Circuit and

Systems, 2008. APCCAS 2008. IEEE.

[11] Karthik Balasubramanyam, Prabhu, P., Jablin, J., Johnson, N., Beard, S.,

and august, D. “Automatic CPU-GPU communication management and

optimization”, in Proc. of ACM Conference on Programming Language

Design and Implementation, 2014.

[12] NVIDIA, "What is GPU Computing?," 2012.

http://www.nvidia.com/object/GPU_Computing.html.

