
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

435

Abstract: At present, there is a networking technique. In storage

services with huge data, the storage servers may want to reduce

the volume of stored data, and the clients may want to monitor the

integrity of their data with considerable increase in the amount of

data stored in storage services, along with dramatic evolution of a

low cost, since the cost of the functions related to data storage

increase in proportion to the size of the data. To achieve these

goals, secure deduplication and integrity auditing delegation

techniques have been studied, which can reduce the volume of data

stored in storage by eliminating duplicate copies and permit clients

to efficiently verify the integrity of stored les by delegating costly

operations to a trusted party, respectively. In this paper should be

design a combined technique, which performs both secure

deduplication of encrypted data and public integrity auditing of

data. To support the two functions, the proposed scheme performs

challenge-response protocols using the BLS signature-based

Homomorphic linear proposed scheme satisfies all the

fundamental security requirements. We also propose two

variances that provide higher security and better performance has

been proposed.

Keywords: MD5 (Message Digest), AES (Advanced Encryption

Standard)

1. Introduction

In cloud storage services, clients outsource data to a remote

storage and access the data whenever they need the data.

Recently, owing to its convenience, cloud storage services have

become widespread, and there

is an increase in the use of cloud storage services. Well-

known cloud services such as Drop box and iCl are used by

individuals and businesses for various notable change in

information based services that has happened recently is the

volume of data used in such services due to the dramatic

evolution of network techniques. For example, in 5G networks,

gigabits of data can be transmitted per second, which means that

the size of data that is dealt by cloud storage services will

increase due to the performance of the new networking

technique. In this viewpoint, we can characterize the volume of

data as a main feature of cloud storage services. Many service

providers have already prepared high resolution contents for

their service to utilize faster networks. For secure cloud services

in the new era, it is important to prepare suitable security tools

to support this change. Larger volumes of data require higher

cost for managing the various aspects of data, since the size of

data influences the cost for cloud storage services. The scale of

storage should be increased according to the quantity of data to

be stored. In this viewpoint, it is desirable for storage servers to

reduce the volume of data, since they can increase their profit

by reducing the cost for maintaining storage. On the other hand,

clients are mainly interested in the integrity data stored in the

storage maintained by service providers. To verify the integrity

of stored files, clients need to perform costly operations, whose

complexity increases in proportion to the size of data. In this

viewpoint, clients may want to verify the integrity with a low

cost regardless of the size of data. Owing to the demands of

storage servers and clients, many researches on this topic are

available in the literature. To reduce the volume of data,

deduplication has to be performed in servers so that the storage

space efficiency can be improved by removing duplicated

copies. According to the research report of EMC, about 75% of

the data are duplicated [7]. This fact raises the need for design

of deduplication technology. In the literature, there are studies

on two types of deduplication techniques. Among them, client-

side deduplication has attracted the interest of researchers more

than server-side deduplication due to its efficiency in

computation and communication. Unfortunately, client-side

deduplication has a number of problems. When clients use

cloud storage services, the integrity of stored data is the most

important requirement. In other words, clients want to be

guaranteed about the integrity of their data in the cloud. In cloud

storage services, we cannot exclude the possibility of weak

cloud servers, which are vulnerable to internal and external

security threats. In the case of data loss due to some incident,

weak servers may try to hide the fact that they lost some data,

which were entrusted by their clients. More seriously, servers

delete rarely accessed users’ data in order to increase the profit.

Therefore, it is a natural requirement of clients to periodically

check the current state of their data. To do this in practice, we

need a way to efficiently check the integrity of data in remote

storage Secure deduplication and integrity auditing are

fundamental functions required in cloud storage services.

Hence, individual researches have been actively conducted on

Trust Worthy Deduplication of Encrypted Data

in Cloud Storage

K. Kalpana Devi1, G. Vasuki2, B. Sowmya3, P. Veeralakshmi4

1,2Student, Department of Information Technology, Prince Shri Venkateshwara Padmavathy Engineering

College, Chennai, India
3,4Professor, Department of Information Technology, Prince Shri Venkateshwara Padmavathy Engineering

College, Chennai, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

436

these two topics. However, relatively few studies have been

conducted for designing a combined scheme that can support

these two functions at the same time. The fundamental goal of

the design of a combined model is to guarantee less overhead

than a trivial combination of existing schemes. In particular, the

goal of this paper is to improve the cost of both computation

and communication. In this paper, we design a new scheme for

secure and efficient cloud storage service. The scheme supports

both secure deduplication and integrity auditing in a cloud

environment. In particular, the proposed scheme provides

secure deduplication of encrypted data. Our scheme performs

PoW for secure deduplication and integrity auditing based on

the homomorphic linear authenticator (HLA), which is

designed using BLS signature. The proposed scheme also

supports public auditing signature TPA (Third Party Auditor)

to help low-powered clients. The proposed scheme states all

fundamental security requirements, and is more efficient than

the existing schemes that are designed to support deduplication

and public auditing at the same time. Note that the preliminary

version of this paper appeared in Moby Sec2017[16]. The main

improvement in this paper is that we propose two variations to

provide higher security and better performance. In the first

variance, which is designed for stronger security, we assume a

stronger adversary and provide a countermeasure against the

adversary. In the second variance, we design a technique that

supports a very low-powered client and entrusts more

computation to the cloud storage server in the upload

procedure. This paper is organized as follows. Section II

describes related works. In Section III, we propose a secure

deduplication technique, which supports integrity auditing

based on AES signature, and analyze it in Section IV. In

addition, we suggest two improved protocols in Section V.

Finally, Section VI provides the conclusion.

2. Related works

Secure deduplication is interesting for both industrial and

research communities; therefore, several secure deduplication

schemes have been proposed showed some attacks in the case

of client-side deduplication, which causes data leakage. To

counter the attacks, the concept of Paw was introduced in Later,

in the convergent encryption, which is defined as message-

locked encryption, was formalized and then, Bellaire et al.

presented another scheme called Duplets for semantic security.

To support data integrity, two concepts, PDP and POR, have

been introduced PDP for ensuring that the cloud storage

providers actually possess the ales without retrieving or

downloading the entire data. It is basically a challenge-response

protocol between the verifier (a client or TPA) and the prover

(a cloud). Compared to PDP, POR not only ensures that the

cloud servers possess the target files, but also guarantees their

full recovery. Since then, a number of POR schemes and PDP

schemes have been proposed. A simple combination of two

independent techniques designed for the two above mentioned

issues does not efficiently deal with the issues at once, because

achieving storage efficiency contradicts with the deduplication

of authentication tags. In public auditing with a deduplication

scheme based on homomorphic linear authentication tags was

proposed. Each user has to generate the integrity tags, even for

the file in the cloud. Moreover, the file is available in its plain

form on the cloud side. The proposed an integrity auditing

scheme for encrypted deduplication storage. This scheme is

based on homomorphic verifiable tags and Merkle hash tree. A

user encrypts his file by using a convergent encryption

technique and uploads the file to a fully trusted TPA.

To reduce the volume of data, deduplication has to be

performed in servers so that the storage space efficiency can be

improved by removing duplicated copies. According to the

research report of EMC, about 75% of the data are duplicated.

In the literature, there are studies on two types of deduplication

techniques. Among them, client-side deduplication has

attracted the interest of researchers more than server-side

deduplication due to its efficiency in computation and

communication. Unfortunately, client-side deduplication has a

number of problems. When clients use cloud storage services,

the integrity of stored data is the most important requirement.

In other words, clients want to be guaranteed about the integrity

of their data in the cloud. In cloud storage services, we cannot

exclude the possibility of weak cloud servers, which are

vulnerable to internal and external security threats. In the case

of data loss due to some incident, weak servers may try to hide

the fact that they lost some data, which were entrusted by their

clients. More seriously, servers delete rarely accessed users'

data in order to increase the port.

3. The proposed scheme

Here, we describe the system model of our scheme. We also

give the corresponding security model. After that, we will give

a detailed description of our scheme according to the models.

In this paper, we design a new scheme for secure and efficient

cloud storage service. The scheme supports both secure

deduplication and integrity auditing in a cloud environment. In

particular, the proposed scheme provides secure deduplication

of encrypted data. Our scheme performs MD5 hash function for

secure deduplication and integrity auditing. The proposed

scheme also supports public auditing using a TPA (Third Party

Auditor) to help low-powered clients. The proposed scheme

satisfies all fundamental security requirements, and is more

efficient than the existing schemes that are designed to support

deduplication and public auditing at the same time. The main

improvement in this paper is that we propose two variations to

provide higher security and better performance. In the first

variance, which is designed for stronger security, we assume a

stronger adversary and provide a countermeasure against the

adversary. In the second variance, we design a technique that

supports a very low-powered client and entrusts more

computation to the cloud storage server in the upload

procedure.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

437

A. System and security model

Our scheme utilizes the BLS signature-based Homomorphic

Linear Authenticator (HLA), which was proposed in [14], for

integrity auditing and secure deduplication. We also introduce

TPA to support public integrity auditing. The proposed scheme

consists of the following entities.

 Client (or user): Outsources data to a cloud storage.

CE-encrypted data is rst generated, and then uploaded

to the cloud storage to protect confidentiality. The

client also needs to verify the integrity of the

outsourced data. To do this, the client delegates

integrity auditing to the TPA.

 Cloud Service Provider (CSP): Provides data storage

services to users. Deduplication technology is applied

to save storage space and cost. CSP has significant

resources to govern distributed cloud storage servers

and to manage its database servers. It also provides

virtual infrastructure to host application services.

These services can be used by the client to manage his

data stored in the cloud servers.

 TPA (Third Party Auditor): Performs integrity

auditing on behalf of the client to reduce the client's

processing cost. Instead of the client, the auditor sends

a challenge to the storage server to periodically

perform an integrity audit protocol. TPA is assumed to

be a semi-trust model, that is, an honest but curious

model. Under the assumption, it is assumed that the

TPA does not collude with other entities. The relation

between entities can be seen in Fig. 1. A client and a

CSP perform PoW for secure deduplication, and a

TPA is placed between the client and the CSP to

execute integrity auditing instead of the client. Here,

we consider the following types of adversary models:

outside adversary, insider adversary CSP, and semi-

honest adversary TPA.

Fig. 1. System model

Outside adversary: Assuming that the communication

channel is not secure, an outside attacker can easily intercept

the transmitted data. An outside attacker attempts to pass the

PoW process as if it were the proper owner of the data. The CSP

assumes that it can act maliciously. It attempts to get

information out of the user's encrypted data, and modify or

delete the user's data. The TPA is assumed to perform the

protocol correctly; however, in the process it tries to obtain

information about the user's data. In addition, the proposed

scheme should satisfy the following security objectives. Except

for the information about duplication, no information about the

outsourced data is revealed to an adversarial party. Secure

Deduplication is supported without revealing any information

except for the information about duplication. The TPA is able

to examine the accuracy and availability of the outsourced data

without querying the entire data and without intervention by the

data owner. If the CSP is keeping the user's data intact, it can

pass the TPA's verification.

B. Detailed operation of proposed method

 Register Login: Here each user has to register by

giving their own information to become a cloud user

and create an authentication to use the cloud service

provider (CSP) and third party authority (TPA) also

have the authentication to login to the cloud. Upload

Files and find

 Deduplication: After successful authentication, user

can check their data in the cloud. If the user wants to

upload a file then they can browse the file and upload

it. Before uploading a file is first checked by user

whether it is already found or not by generating the

hash values of the file and compare it with own files.

If already exist, then file will not save in cloud else file

will be encrypted and saved in cloud. User sends the

file information to the TPA for auditing the files

regularly.

 Audit Request and Response: In this model, TPA sends

the audit request to the cloud by selecting the files

randomly and waiting the response from the cloud.

After receiving the request from the TPA the cloud

generate byte values of a file and send it to the TPA

for verification. TPA verifies a byte values from the

cloud with customer given byte values to check the file

is safe or not. TPA sent the audited result to the

corresponding user to check the status of a file.

 Download Request and Response: To download a file

from the cloud, User has to send the request to cloud.

After receiving the request from the user the CSP

verifies the cloud user information and accept the

request. Accepted request is shown to the user to

download a file from the cloud. After downloading a

file, user decrypt a file and get the original file.

C. Working procedure

It compares objects (usually files or blocks) and removes

objects (copies) that already exist in the data set. The

deduplication process removes blocks that are not unique.

 Divide the input data into blocks or “chunks.”

 Calculate a hash value for each block of data.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

438

 Use these values to determine if another block of the

same data has already been stored.

Fig. 2. Working procedure

D. Data Deduplication

Once the data is chunked, an index can be created from the

results, and the duplicates can be found and eliminated. Only

single instance of data is stored The actual process of data

deduplication can be implemented in a number of different

ways. We can eliminate duplicate data by simply comparing

two files and making the decision to delete one that is older or

no longer needed. File system-based deduplication is a simple

method to reduce duplicate data at the file level. An example of

this method is comparing the name, size, type and date-

modified information of two files with the same name being

stored in a system. If these parameters match, you can be pretty

sure that the files are copies of each other and that you can

delete one of them with no problems. Although this example

isn't a foolproof method of proper data deduplication, it can be

done with any operating system and can be scripted to automate

the process, and best of all, it's free. Based on a typical

enterprise environment running the usual applications, you

could probably squeeze out between 10 percent to 20percent

better storage utilization by just getting rid of duplicate files.

Fig. 3. Deleting duplicate files

E. AES algorithm

Broadly speaking the encryption/decryption can be done via

symmetric key or asymmetric key. In symmetric algorithms,

both parties share the secret key for both encryption/decryption,

and from privacy perceptive it is important that this key is not

compromised, because cascading data will then be

compromised. Symmetric Encryption/decryption require less

power for computation. On the other hand, asymmetric

algorithms use pairs of keys, of which one key is used for

encryption while other key is used for decryption. Generally,

the private key is kept secret and generally held with the owner

of data or trusted 3rd party for the data, while the public key can

be distributed to others for encryption. The secret key can't be

obtained from the public key. In our case since the

encryption/decryption is performed on trusted 3rd party server,

symmetric key is used, and it delegates the burden of key

management to the trusted 3rd party. If key management where

to be done at clients end it would mean, 1. either they have to

remember the big key 2. store the key in all devices/machine

which will be used to access the cloud services, which make

user device a bottleneck. 3. individual owner has to take the

responsibility of sharing the key with specific authorized group

of user which he/she dene. Outline of the AES Algorithm

Constants: intNb = 4; // but it might change someday int Nr =

10, 12, or 14; // rounds, for Nk = 4, 6, or 8 Inputs: array in of

4*Nb bytes // input plaintext array out of 4*Nb bytes // output

ciphertext array w of 4*Nb*(Nr+1) bytes // expanded key

Internal work array: state, 2-dim array of 4*Nb bytes, 4 rows

and Nb cols Algorithm: void Cipher(byte[] in, byte[] out, byte[

] w) f byte[][] state = new byte[4][Nb]; state = in; // actual

component-wise copy AddRoundKey(state, w, 0, Nb - 1); // see

Section 4 below for (int round = 1; round < Nr; round++) f

SubBytes(state); // see Section 3 below ShiftRows(state); // see

Section 5 below MixColumns(state); // see Section 5 below

AddRoundKey(state, w, round*Nb, (round+1)*Nb - 1); //

Section 4 gSubBytes(state);//see Section 3 below

ShiftRows(state); // see Section 5 below 20

AddRoundKey(state, w, Nr*Nb, (Nr+1)*Nb - 1); // Section 4

out = state;

Fig. 4. Sequence of AES Algorithm

F. MD5 algorithm

Fig. 5. MD5 algorithm

It generates 16-bit hash key to the file positioned for

encryption. At the same time user generates a master key for the

file to have authenticated access by which file can be

downloaded and decrypted. The successful encrypted file is

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

439

uploaded to the auditor. Insegment1 this job is carried out.

Coming to redundant duplication, hash code generated by MD5

in background for every encryption is sorted and maintained by

the auditor. Here the specialty of MD5 is generating hash code

for the file irrespective of names. This hash code helps the

manager to cross check hashes for each and every time. This

method also uses to store some hash code even then it doesn’t

lead to over heading on manager auditor end, this is because the

hash code generated by MD5 algorithm is 16 characters key,

are same for even 1000 characters file. This hash code even

differs even if one character in the file differ. So MD5 is a

highly strengthened idea for redundant duplication. There by

this hash stored in auditor for each file will decide whether to

traverse the file or not to the cloud. Here by it reduces and

replaces the traditional idea of comparing the file names for the

existence in cloud. Here vital role is played by the auditor to

compare and cross check content of the file data. In regular

interval of time the auditor often logs in to have a check for

replication to avoid duplicates. According to auditor

observation if the same content of the files is keep on

outsourced then it leads to wastage of cloud space which cause

impact on over heading and performance of cloud and drain the

efficiency of the cloud. All the current hash code of the file is

cross check with the existing code. Memory constraints will not

be affected by the key stored. Memory consumed by just 128bit

will not occupy heavy space in the audit dynamo, Therefore

MD5 hashing technique gives very less overheating which is

not a very big deal. Here hash code comparison is not at all

carried out by the client end nor does cloud server, it is done

separate by the third party server called auditor. No the client

server or cloud server is responsible for the generation of the

hash code even for storing and comparing. Consequently, this

method is more accurate and reliable way of auditing and

monitoring the redundant duplicates, nonredundant in cloud. As

cloud cost for storing the data with repetition of file leads to

wastage of money to the client. If file is very small then

repetition is considerable, if it is in terabytes or terabytes

repetitions is not suggestible.

 Public Key Generation For each and every current

input of client a random unique key is generated

known as public key. This key is generated for every

login and key is very much essential for access of

cloud. Next client uploads the file f1 and call for

encryption to encrypt, let the encrypted file be f2,

clientele ways want to secure the data so uploads the

encrypted file. Input (f1, f2) Upload () In this process

cypher texted file taken as input and ask the client for

desired name to upload the file, The name of the file is

displayed in the list of file

 Hash Key Generation Here MD5 is used which runs

on background of auditor. This MD5 generates 16 char

hash key Auditor will perform all the process of

finding duplications and store the key in the log for

future checking.

 Redundant Duplication Here comparing of hash key

for the new hash.

INPUT (F1, F2) DES (F1, F2) =£1,£2; MD5 (F1, F2)

=f1#,f2#; UPLOAD ((£1, f1#) ∩ (£2, f2#));

Fig. 6. Md5 hash generator

1) Input

MD5 hashes are 128-bits in length and are normally shown

in their 32 digit hexa decimal value equivalent. This is true no

matter how large or small the file or text may be.

Here's an example:

 Plain text: This is a test.

 Hex value:

120EA8A25E5D487BF68B5F7096440019

When more text is added, the hash translates to a totally

different value but with the same number of characters:

Plain text: This is a test to show how the length of the text does

not matter.

Hex value: 6c16fcac44da359e1c3d81f19181735b.

2) Screenshots

(a)

(b)

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-3, March-2019

www.ijresm.com | ISSN (Online): 2581-5792

440

(c)

Fig. 7. File upload process

4. Conclusion

We proposed a scheme to achieve both secure deduplication

and integrity auditing in cloud environment. To prevent leakage

of important information about user data, the proposed scheme

supports a client side deduplication of encrypted data, while

simultaneously supporting public auditing of encrypted data.

We used MD5 and AES algorithm to compute authentication

tags for the integrity auditing. The proposed scheme satisfied

the security objectives, and improved the problems of the

existing schemes.

5. Future enhancement

To support the dynamic auditing, we will develop a dynamic

provable data possession protocol based on cryptographic hash

function and symmetric key encryption. Their idea is to pre-

compute a certain number of metadata during the setup period,

so that the number of updates and challenges is limited and

fixed beforehand. In their protocol, each update operation

requires recreating all the remaining metadata, which is

problematic for large files. Moreover, their protocol cannot

perform block insertions anywhere (only append-type

insertions are allowed).

References

[1] G.Atenieseet al., “Provable data possession at untrusted 0 stores,'' in Proc.

14th ACM Conf. Comput. Commun. Secur., Alexandria, VA, USA, 2007,

pp. 598-609.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, ``Scalable and

ef_cient provable data possession,'' in Proc. 4th Int. Conf. Secur. Privacy

Commun. Networks, Istanbul, Turkey, 2008, Art. no. 9.

[3] D. Boneh, B. Lynn, and H. Shacham, ``Short signatures from the Weil

pairing,'' J. Cryptol., vol. 17, no. 4, pp. 297-319, 2004.

[4] Y. Dodis, S. Vadhan, and D. Wichs, ̀ `Proofs of retrievability via hardness

ampli_cation,'' in Proc. 6th Theory Cryptogr. Conf., San Francisco, CA,

USA, 2009, pp. 109-127.

[5] M. Dworkin, ``Recommendation for block cipher modes of operation:

Methods and techniques,'' NIST, Gaithersburg, MD, USA, Tech. Rep. SP-

800-38A, 2001.

[6] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, ``Dynamic

provable data possession,'' in Proc. 16th ACM Conf. Comput. Commun.

Secur.Chicago, IL, USA, 2009, pp. 213-222.

[7] J. Gantz and D. Reinsel, ``The digital universe decade_Are you ready?''

International Data Corporation, China Oceanwide, MA, USA, White

Paper IDC-925, 2010.

[8] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, ``Proofs of

ownership in remote storage systems,'' in Proc. 18th ACM Conf. Comput.

Commun. Secur. Chicago, IL, USA, 2011, pp. 491-500.

[9] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ``Side channels in cloud

services: Deduplication in cloud storage,'' IEEE Security Privacy, vol. 8,

no. 6, pp. 40_47, Nov./Dec. 2010.

[10] A. Juels and B. S. Kaliski, Jr., ``Pors: Proofs of retrievability for large

_les,'' in Proc. 14th ACM Conf. Comput. Commun. Secur., Alexandria,

VA, USA, 2007, pp. 584_597.

[11] S. Keelveedhi, M. Bellare, and T. Ristenpart, ``DupLESS: Server-aided

encryption for deduplicated storage,'' in Proc. 22nd USENIX Security.

Symp., Washington, DC, USA, 2013, pp. 179-194.

[12] J. Li, J. Li, D. Xie, and Z. Cai, ``Secure auditing and deduplicating data

in cloud,'' IEEE Trans. Comput., vol. 65, no. 8, pp. 2386-2396, Aug. 2016.

[13] X. Liu, W. Sun, H. Quan, W. Lou, Y. Zhang, and H. Li, ``Publicly

veri_able inner product evaluation over outsourced data streams under

multiple keys,'' IEEE Trans. Services Comput., vol. 10, no. 5, pp.

826_838, Sep./Oct. 2017.

[14] H. Shacham and B. Waters, ``Compact proofs of retrievability,'' in Proc.

Int. Conf. Theory Appl. Cryptol. Inf. Secur., Melbourne, VIC,

Australia,2008, pp. 90-107.

[15] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, ``Enabling public

auditability and data dynamics for storage security in cloud computing,''

IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 847-859, May 2011.

[16] T. Y. Young, K. Y. Chang, K. R. Rhee, and S. U. Shin, ``Public audit and

secure deduplication in cloud storage using BLS signature,'' Res. Briefs

Inf. Commun. Technol. Evol., vol. 3, pp. 1_10, Nov. 2017, Art. no. 14.

[17] J. Yuan and S. Yu, ``Proofs of retrievability with public veri_ability and

constant communication cost in cloud,'' in Proc. Int. Workshop Secur.

Cloud Comput. Hangzhou, China, 2013, pp. 19-26.

[18] J. Yuan and S. Yu, ``Secure and constant cost public cloud storage

auditing with deduplication,'' in Proc. IEEE Conf. Commun. Netw. Secur.

(CNS)National Harbor, MD, USA, Oct. 2013, pp. 145-153.

