
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

329

Abstract: Smart home is an emerging technology for

intelligently connecting a large variety of smart sensors and

devices to facilitate automation of home appliances, lighting,

heating and cooling systems, and security and safety systems. The

intention of the platform is to provide an easy to use and highly

customizable system for collecting and processing sensor data in a

variety of environments and applications. In this paper, the design

and implementation of the system through the use of a Python

client, a PHP and Flask Web Server/API, a Relational Database

Management System (RDBMS) MySQL and external connections

to services such as If This Then That (IFTTT) are discussed in

detail. Our study has revealed several interesting concepts which

can be expressed as role/application/security models. Adapting

these models for the domain of home automation systems, a multi-

tier software framework is proposed for automating home

activities according to the key concept “IF-This-Then-That”.

Keywords: Home Automation, Software Framework, Open

Source, Raspberry Pi.

1. Introduction

Today the smart home market is still in its infancy. Although

numerous vendors have produced and marketed hundreds or

thousands types of smart home devices, such as smart lights,

smart switches and smart outlets, many of them can only

interact with products from the same manufacturers. To foster

intervendor compatibility and encourage community-based

software development ecosystems (e.g., iOS App Store), some

major players in the market have developed a few smart home

platforms to encourage manufacturers to produce compatible

devices and software developers to develop applications with a

uniform abstraction of smart devices. Recent technological

advances in networking hardware and software [1] have

expanded the scope of home automation applications to smart

grid [2] and healthcare [3]. Compared to other types of

buildings, software for home automation systems poses several

challenges especially the trade-off between functionality and

usability and also the trade-off between connectivity and

privacy. Consequently, there is still no dominant technology in

the field of home automation systems.

There are several academic works aim to implement advance

functions for home automation systems, e.g. voice interface [4],

remote operations [5], and cloud computing [6]. Nevertheless

these works are constrained in the sense of scalability and

portability with respect to the scope of applicable hardware

platforms. On the other hand, there are several technical books

[7], [8] that explain how to build DIY home automation systems

using off-the-shelf components and open-source software. As

opposed to academic works, their functionality and technical

levels are limited by features provide by their underlying

software platforms. While almost of existing commercial

frameworks provide high-level of abstraction to achieve

functionality and usability. These frameworks suffer from the

heterogeneity of devices in the market.

The main concept is to formulate a minimal automaton that

integrates multiple code segments that a user chooses from a

repository. That is, a sequence of automated activities is

programmed by its home owner by selecting and configuring

code from available pool. With such a wide variety of options

out there for sensors, let alone ways to implement them, there

can be a lot of unnecessary redundancy in development effort.

We aim to provide a flexible solution that will enable the

average user to harness these technologies to perform desirable

tasks. When looking at the current mainstream alternatives,

such as sensors and commercial Internet of Things (IoT)

devices, they are almost always proprietary hardware coupled

with limited and closed source software. This means their

usefulness is dependent on what the developer provides in terms

of functionality and that they may not work on all platforms.

However, with the Sensorian Hub, we aim to make it platform

agnostic, working with multiple languages by using a REST

API to allow all of the sensors to interface. Finally, by making

these kits easier to set up, they will have a smaller learning

curve and be more attractive and customizable than other

standard offerings.

2. Overview of the system

The use of the Raspberry Pi as a Sensor Web node for home

automation has been explored. Using a similar strategy for

displaying the data through a RESTful service and Apache, our

implementation differs in that it is designed to be hosted

separately from the Pi and to store the data from as many sensor

nodes as desired. While the server could also be hosted on one

of these nodes, having it hosted in a central location and with

unrestricted access to the Internet gives the added benefit of

being able to interface with other useful services such as If This

Monitoring Sensor’s Data with IFTTT

for Smart Home

Rupali P. Wankhade1, Sneha M. Wagh2, A. G. Waghade3

1,2Student, Department of Computer Science and Engineering, Desscoet, Dhamangaon Rly., India
3Professor, Department of Computer Science and Engineering, Desscoet, Dhamangaon Rly., India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

330

Then That (IFTTT).

IFTTT model are based on some model as discuss as follows:

A. Role model

Within the IFTTT environment, there are three groups of

stakeholders, namely IFTTT itself, channel owners, and end

users. Each stakeholder will have their own objective, scope of

access, functions, and benefits. The use case diagram (see

Fig.1) represents the relationship among stakeholders.

Fig. 1. Role model within the IFTTT environment.

The role of IFTTT itself is to provide channels to end users

and to access web services/social networks/smartphone on the

behalf of each user. Each channel represents a collection of

available data/operations from its corresponding service. The

role of channel owners is to make connectors to bridge with

IFTTT backend services. Companies that would like to promote

their services/products as IFTTT channels must submit their

APIs for the approval. There are two main functions for end

users: recipe creation and recipe usage. Each IFTTT recipe is

created by joining between a trigger and an action resulting in

the information flow from one service to another. By separating

roles of IFTTT/channels/users, good usability is achieved for

almost end users due to its simple workflow. Even UI is simple,

functionality is compensated by the availability of channels and

corresponding triggers/actions. These affect a reasonable trade-

off between functionality and usability. This role model should

also serve reasonably well for home automation systems in

which homeowners prefer customizable automated activities

and easy-to-use UI.

B. Application model

There are two different perspectives for the application

model of IFTTT; namely developer perspective (channel) and

user perspective (recipe). For the provision of channels, IFTTT

manages basic channels for popular services, while third-party

channel owners are responsible for their web APIs

(authenticate/ authorize/access). The scope of development is

to abstract and wrap API-related operations as a collection of

triggers/actions in each channel. For end users, automated

activities can be customized with respect to the creation or

selection of recipes. The procedure to create a recipe is outlined

as follows:

 Register and login to IFTTT.

 Create a trigger and an action:

 Select a channel from the provided list

 Activate by authorize IFTTT with the service provider

underlying such channel.

 Select a potential trigger/action from the available list.

 Fill needed information for the selected trigger/action.

 Fill description and activate recipe.

 Share recipe if needed.

3. System architecture

A. Sensorian hub

The proposed solution to the lack of an easy, allen

compassing client for use of a Raspberry Pi as a sensor node

was the creation of the Sensorian Hub client and its partner web

application. The main goal of this solution was to create a basic,

modular code base for getting the average user off the ground

easily with their sensor-based application and started with

deeper integration of its functionality.

As shown in Fig. 2 the Sensorian Hub is broken into three

main parts. The Web Server hosts the site which receives the

sensor data from the Clients, stores and retrieves this data from

a MySQL Database for display on the site to users, and accepts

registrations of new users and sensors. The public-facing Relay

allows for communication with Clients behind secure networks

by listening for connections established by the Clients first.

This allows for commands to be sent from users outside the

local network or other cloud services such as IFTTT.

Fig. 2. High-level Sensorian Hub overview

The objective of this work is to develop a framework that

enables the integration of DIY components for automating

home activities. To achieve both functionality and usability, the

following modifications to the IFFFT model are proposed.

 There are three groups of stakeholders: homeowners,

open-source developers, and web services/social

networks.

 The platform consists of three computer systems

including a programmable gateway, a public cloud,

and a user terminal (e.g., computer, smartphone).

 Channels are provided by scripts in the programmable

gateway and web services.

 Both channel review and activation processes are

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

331

handled by the homeowners themselves.

These modifications correspond to the nature of DIY home

automation systems in which some scenarios may conflict with

mandatory requirements of IFTTT or similar Internet of Things

platforms. For example, homeowners may build their systems

by purchasing and assembling off-the-shelf parts. Internet

connection may not exist or not reliable. Almost use cases of

home automation systems prefer restricted group access and

unbalanced connectivity (at-home and anywhere) features.

Fig. 3. Software architecture of our proposed framework.

The software system on the public cloud (see Fig. 3) acts as

a code repository that allows developers to upload their code

and provides custom scripts and configuration files for each

user. Another service is to serve as a broker for the request of

access tokens from web services/social networks that enforce

the OAuth authorization flow. The software system on the

programmable gateway will handle automated jobs according

to the concept of “IF-This-Then-That” by running code

expressed in configuration files. The user terminal will only be

used for the authorization of our cloud services with web

services/social networks.

4. Conclusion

Our framework consists of two software systems: web

applications as cloud services and software stack on home

automation gateways. Our cloud services handle two major

functions: repository of automated scripts and API bridges for

web services/social networks. The software stack integrates the

simplified core script, a collection of trigger/action scripts, and

software applications providing features. The main advantage

of our proposed framework is its simplified design while

preserving extensibility and usability.

References

[1] Paul Black. 2008. Levenshtein Distance. In Dictionary of Algorithms and

Data Structures.

[2] David Brumley and Dan Boneh. 2005. Remote timing attacks are

practical. In Computer Networks.

[3] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-

channel leaks in web applications: A reality today, a challenge tomorrow.

In IEEE Symposium on Security and Privacy (S&P).

[4] Kyong-Tak Cho and Kang G. Shin. 2017. Viden: Attacker Identification

on Vehicle Networks. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’17).

ACM, New York, NY, USA, 1109–1123.

[5] Smart Things Community. 2015. How many Smart Things users?

https://comm unity. smartthings.com/t/how-many-st-users/10928/3.

[6] Q. Mahmoud and D. Qendri, "The Sensorian IoT platform", 2016 13th

IEEE Annual Consumer Communications & Networking Conference

(CCNC), pp. 286 - 287, 2016.

[7] S. Banerjee, D. Sethia, T. Mittal, U. Arora and A. Chauhan, "Secure

sensor node with Raspberry Pi", IMPACT-2013, pp. 26 - 30, 2013.

[8] S. Ferdoush and X. Li, "Wireless Sensor Network System Design Using

Raspberry Pi and Arduino for Environmental Monitoring Applications",

Procedia Computer Science, vol. 34, pp. 103-110, 2014.

[9] "RFC 7252-The Constrained Application Protocol (CoAP)",

Tools.ietf.org, 2016.

https://tools.ietf.org/html/rfc7252.

[10] V. Vujovic and M. Maksimovic, "Raspberry Pi as a Wireless Sensor node:

Performances and constraints", 2014 37th International Convention on

Information and Communication Technology, Electronics and

Microelectronics (MIPRO), pp. 1013 - 1018, 2014.

