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Abstract: A solid sphere is falling through a viscous medium 

under influence of gravity. Now a viscous force must act on this 

sphere along upward direction. It is for viscous dragging. Scientist 

Newton gave atfirst the idea of this force. After that scientist 

George Gabriel Stokes established the viscous drag formulla for a 

sphere when it is falling through a viscous medium. This dragging 

force will produce due to the addition of two forces, (1) Shearing 

Force and (2) Force Due To Pressure. In this paper shearing force 

acting on the sphere is estimated theoretically on the basis of a new 

concept of velocity gradient, frame of reference and equation of 

continuity.  

 

Keywords: cross-sectional area and Reynold’s law of viscosity  

1. Introduction 

We know that Scientist George Gabriel Stokes established 

his law in the year 1851 and now in this theorem shearing force 

term is derived theoretically. So it can be shown that Stokes law 

is valid theoretically also. It is mathematically given by 

𝐹 = 6𝜋𝜂𝑎𝑣……… [1] 

     Here I am now going to elaborate and prove the shearing 

force term used on the basis of mechanical view.  

A. Estimation of shearing force  

When a spherical solid ball or sphere having radius “a” is 

allowed to fall through a liquid medium having viscosity 

coefficient n, it is moving along downward under the influence 

of gravity. So tangential force must act on the surface of that 

sphere. This force is given by each liquid layer to the sphere for 

its viscous nature. Now we devide the whole sphere into two 

equal hemispheres. 

 
Fig. 1.  A Sphere is falling through the Viscous Medium 

 

 

Now for the lower hemisphere, we consider a circular 

elementary disc having radius  𝑎𝑠𝑖𝑛𝜃 and width 𝑎𝑑𝜃 [as shown 

in figure, such that the velocity of it at the layer A is v and at 

the layer B is (𝑣 − 𝑑𝑣), since, from the continuity equation we 

know for wide cross-sectional area the velocity of liquid flow 

must be less than that for narrow cross-sectional area, more 

clearly if 𝐴1/𝐴2 > 1, then 𝑉1/𝑉2 < 1, 

 
Fig. 2.  Proof of Equation of Continuity 

 

So for lower hemisphere velocity gradient must be positive, 

We have the velocity gradient over this layer = 𝑑𝑣/𝑑𝑥, 
Although liquid is static and the sphere is moving with a certain 

velocity, but with respect to the frame of sphere, the sphere is 

at rest and liquid is flowing just opposite to the motion of 

sphere. So, effectively we can apply Reynold’s law of viscosity 

for the elementary width dx of this liquid layer. Now it can be 

supposed that the liquid will pass through a region having width 

(𝑑 − 2𝑎𝑠𝑖𝑛𝜃) with velocity𝑣, SO, We can apply here the 

Reynolds law related with viscosity. 

        Here it should be, 

    𝑣 =
𝑘𝜂

𝜌(𝑑−2𝑎𝑠𝑖𝑛𝜃)
………… [2] 

And hence the change of velocity between two layers be given 

by 

𝑑𝑣 =
2𝑎𝑘𝜂𝑐𝑜𝑠𝜃

𝜌(𝑑−2𝑎𝑠𝑖𝑛𝜃)2 𝑑𝜃……….. [3] 

For 𝑑𝑥 → 𝑎𝑑𝜃 

We get, 
𝑑𝑣

𝑑𝑥
=

2𝑘𝜂𝑐𝑜𝑠𝜃

𝜌(𝑑−2𝑎𝑠𝑖𝑛𝜃)2 ...........[4] 

Where, k is Reynold’s number and 𝜌 is the density of the fluid 

medium, 
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 This equation [4] represents the velocity gradient of liquid. 

Here the tangential force will act on that layer along upward on 

the elementary area segment of it, and here this area must be, 

 𝑑𝐴 = 2𝜋𝑎𝑠𝑖𝑛𝜃. 𝑎𝑑𝜃 

    = 2𝜋𝑎2𝑠𝑖𝑛𝜃𝑑𝜃    [From Fig-1] 

      Now, the tangential stress on that elementary segment 

from Newton's law of viscosity we get, Tangential stress is 

proportional to the velocity gradient (dv/dx), 

 𝑓 ∝
𝑑𝑣

𝑑𝑥
 

𝑑𝐹 = 𝜂. 𝑑𝐴.
𝑑𝑣

𝑑𝑥
 

⇒ 𝑑𝐹 = 𝜂. 2𝜋𝑎2𝑠𝑖𝑛𝜃𝑑𝜃
2𝑘𝜂𝑐𝑜𝑠𝜃

𝜌(𝑑 − 2𝑎𝑠𝑖𝑛𝜃)2
 

⇒ 𝐹1 = ∫ 𝑑𝐹 = ∫ 𝜂. 2𝜋𝑎2𝑠𝑖𝑛𝜃
2𝑘𝜂𝑐𝑜𝑠𝜃

𝜌(𝑑 − 2𝑎𝑠𝑖𝑛𝜃)2

𝜋
2

0

𝑑𝜃 

⇒ 𝐹1 =
𝜋𝑘𝜂2

𝜌
∫

𝑑 − 𝑡

𝑡2
𝑑𝑡

𝑑

𝑑−2𝑎

 

⇒ 𝐹1 =
𝜋𝑘𝜂2

𝜌
[

2𝑎

𝑑−2𝑎
− log𝑒

𝑑

𝑑−2𝑎
]……. [5] 

This is the force acting on the sphere along upward direction 

at the lower hemisphere, On the other hand, for upper portion 

of it, the attractive force will act on the upper hemisphere along 

upward and the effect of this force must change layer to layer 

when the sphere is falling down through the viscous medium 

Similarly, for this case if we choose an elementary area segment 

on the upper hemisphere, then, here effectively we see that the 

velocity gradient is here actually negative, and it is (-dv/dx). 

The net force acting (along the upward due to adhesive 

attraction on the sphere by the liquid layers be given by 

      𝑑𝐹 = 𝜂. 𝑑𝐴(−
𝑑𝑣

𝑑𝑥
) 

⇒ 𝑑𝐹 = −𝜂. 2𝜋𝑎2𝑠𝑖𝑛𝜃𝑑𝜃
2𝑘𝜂𝑐𝑜𝑠𝜃

𝜌(𝑑 − 2𝑎𝑠𝑖𝑛𝜃)2
 

⇒ 𝐹2 = ∫ 𝑑𝐹 = − ∫ 𝜂. 2𝜋𝑎2𝑠𝑖𝑛𝜃
2𝑘𝜂𝑐𝑜𝑠𝜃

𝜌(𝑑 − 2𝑎𝑠𝑖𝑛𝜃)2

0

𝜋
2

𝑑𝜃 

⇒ 𝐹2 = ∫ 𝑑𝐹 = ∫ 𝜂. 2𝜋𝑎2𝑠𝑖𝑛𝜃
2𝑘𝜂𝑐𝑜𝑠𝜃

𝜌(𝑑 − 2𝑎𝑠𝑖𝑛𝜃)2

𝜋
2

0

𝑑𝜃 

 

⇒ 𝐹2 =
𝜋𝑘𝜂2

𝜌
∫

𝑑 − 𝑡

𝑡2
𝑑𝑡

𝑑

𝑑−2𝑎

 

⇒ 𝐹2 =
𝜋𝑘𝜂2

𝜌
[

2𝑎

𝑑−2𝑎
− log𝑒

𝑑

𝑑−2𝑎
]……….. [6] 

 This the effective shearing force acting on the upper 

hemisphere of the falling sphere. 

   So finally,  

Total force acting on the whole hemisphere due to shearing 

stress acting on it i.e. total viscous drag due to shearing force 

becomes 

    𝐹(𝑠ℎ𝑒𝑎𝑟) = 𝐹1 + 𝐹2 =
2𝜋𝑘𝜂2

𝜌
[

2𝑎

𝑑−2𝑎
− log𝑒

𝑑

𝑑−2𝑎
] 

                                               ………….. [7] 

 This is the effective shearing force acting on the whole 

spherical ball along upward. Now, in case if the diameter of the 

vessel of liquid be much greater than the diameter of the sphere, 

then for achieving a constant velocity (So called terminal 

velocity) the ball will move with velocity v. Again from the 

concept of frame of reference we get from Reynolds law 

                          𝑣 =
𝑘𝜂

𝜌(𝑑−2𝑎𝑠𝑖𝑛𝜃)
 

For, (𝑑 − 2𝑎) → 𝑑 we have  (𝑑 − 2𝑎𝑠𝑖𝑛𝜃)→𝑑 

    Hence net shearing force become 

       𝐹(𝑠ℎ𝑒𝑎𝑟) =
2𝜋𝑘𝜂2

𝜌
[

2𝑎

𝑑
] 

⇒ 𝐹(𝑠ℎ𝑒𝑎𝑟) = 4𝜋𝜂𝑎
𝑘𝜂

𝜌𝑑
 

⇒ 𝐹(𝑠ℎ𝑒𝑎𝑟) = 4𝜋𝜂𝑎𝑣………. [8] 

      Hence it is the actual shearing force acting on the sphere or 

spherical ball along upward when it falls under influence of 

gravity through a viscous medium. Also the force acting due 

to pressure on the spherical ball must be  

𝐹(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = 2𝜋𝜂𝑎𝑣 [It was published before by 

U.H.Kurzweg] 

     So, total force becomes F =F(shear)+F(pressure) i.e. 

 𝐹 = 6𝜋𝜂𝑎𝑣 

  Hence finally the shearing force acting on the spherical ball 

is estimated in easy way and Stokes law of viscosity and it 

also supports Stokes law of viscosity. This is the estimation of 

shearing force by a new and very easy procedure. 

2. Conclusion 

This paper concludes that estimation of shearing force and 

verification of stokes’ law of viscosity 
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