
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

95

Abstract: The general layered heterogeneous parallel

computation model was composed of parallel algorithm design

model, parallel programming model, parallel execution model,

and each model correspond to the three computing phases

respectively. The properties of each model were described and

research spots were also given. In parallel algorithm design model,

an advanced language was designed for algorithm designers, and

the corresponding interpretation system which based on text

scanning was proposed to map the advanced language to machine

language that runs on the heterogeneous software and hardware

architectures. The advanced version allows the programmer to

define at runtime all the main features of the underlying parallel

algorithm, which have an impact on the application execution

performance, namely, the total number of participating parallel

processes, the total volume of computations to be performed by

each of the processes, the total volume of data to be transferred

between each pair of the processes, and how exactly the processes

interact during the execution of the algorithm. Such an abstraction

of parallel algorithm is called a network type.

Keywords: Parallel programming model, parallel execution

model, Heterogeneous network of computers; Heterogeneous

parallel computing.

1. Introduction

Heterogeneous networks of computers are the most general

and common parallel architecture. In the most general case, a

heterogeneous network includes PCs, workstations,

multiprocessor servers, clusters of workstations, and even

supercomputers. Unlike traditional homogeneous parallel

platforms, the heterogeneous parallel architecture uses

processors running at different speeds. What is even more

important, the processors demonstrate different relative speeds

on different code mixtures. Speeds of data transfer between

different processors in heterogeneous networks can also differ

significantly. Communications between processors of the same

shared-memory multiprocessor server will be much faster than

communications between processors of different workstations.

It makes programming heterogeneous platforms a challenging

task. Data, computations, and communications should be

distributed unevenly to provide the best execution performance.

Parallel computation exists for many years, but it was employed

mainly in high-performance computation field. While due to the

reduction on hardware costs, interest in parallelism has

increased. As the frequency scaling is restricted by physical

constraints, and the power consumption of computers has also

become a concern in recent years, multi-core processors has

predominated in computer architecture. Researchers also

shifted their focus from clusters to multi-core CPUs and GPUs.

As is known, parallelized programs are usually realized in three

steps:

 The algorithm designer describes the given problem as

a numeric or nonnumeric problem.

 The program designer writes the parallel program with

a certain parallel programming language.

 The program runner compiles and runs the program on

a specific parallel platform to complete the

computation and solves the problem.

The performance of the final parallel program is affected by

many factors: designing of algorithm, program implementation,

processor architecture, communication between threads,

operating system, network bandwidth etc. To build the

optimized parallel program, all influence factors should be

parameterized and taken into consideration. Since there are too

many parameters representing the different characteristics in

the parallel platform, the description of the single model would

be more and more complicated. Eventually the cost function

would be too complicated to solve. By contrast, a layered model

not only fits the heterogeneous computation platform more

precisely, but also simplifies the problem. Work on parallel

computation model has been done since 1970s. The first

generation models focused on computation, including PRAM

(Parallel Random Access Machine) model based on SIMD and

APRAM(Asynchronous Parallel Random Access Machine)

based on MIMD. The second generation models focused on

network communication.

2. Overview of the system

A. Hardware trends in heterogeneous system designs

Some future trends in the heterogeneous system designs are

evident from USA’s DOE plans for the next generation of

supercomputers. The aim is to deploy three different platforms

by 2018, each with over 150 peta flops of peak performance

[18]. The Aurora system, on the other hand, will offer a more

homogeneous model by utilizing the Knights Hill Xeon Phi

architecture, which, unlike the current Knights Corner, will be

Parallel Computation for Layered Model based

on Heterogeneous System

Pranita A. Bhagat1, Vaishnavi D. Bante2, Shyam R. Ayyar3, A. K. Gaikwad4

1,2,3Student, Department of Computer Science and Engineering, DESSCOET, Dhamangaon Rly., India
4Professor, Department of Computer Science and Engineering, DESSCOET, Dhamangaon Rly., India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

96

a stand-alone processor and not a slot-in coprocessor, and will

also include integrated Omni-Path communication fabric. All

platforms will benefit from recent advances in 3D-stacked

memory technology, and promise major performance

improvements:

 CPU memory bandwidth is expected to be between

200 GB/s and 300 GB/s using HMC.

 GPU memory bandwidth is expected to approach 1

TB/s using HBM.

 GPU memory capacity is expected to reach 60 GB

(NVIDIA Volta).

 NV Link is expected to deliver from 80 up to 200 GB/s

of CPU-to-GPU bandwidth.

 In terms of computing power, the Knights Hill is

expected to be between 3.6 and 9 teraflops, while the

NVIDIA Volta is expected to be around 10 teraflops.

B. Basic model of heterogeneous parallel algorithm

The language is an ANSI C superset designed specially for

programming parallel computations on common networks of

diverse computers. The main goal of parallel computing is to

speed up solving problems on available computer resources.

Just this differs parallel computing from distributed computing,

the main goal of which is to make different software

components, inherently located on different computers, work

together. In the case of parallel computing, partition of the

whole program into a number of distributed components

located on different computers is just a way to speed up

execution of the program not its inherent property. Therefore,

when designing the language, the primary attention was paid to

the means that facilitate development of high efficient and

portable programs solving single problems on common

networks of computers. A parallel program running on the

network of computers is a set of processes interacting (that is,

synchronizing their work and transferring data) by means of

message passing. Source code does not specify how many

processes constitute the parallel program as well as which

computer runs one or another process. This is done by some

means external to the language when the program is started up.

Source code only describes which computations are performed

by each of the processes constituting the program.

3. System analysis

A. Architecture of the parallel computation model

Parallel computers can be roughly classified according to the

level at which the hardware supports parallelism, with multi-

core and multi-processor computers having multiple processing

elements within a single machine, while clusters, massively

parallel processing (MPPs) and grids use multiple computers to

work on the same task. Specialized parallel computer

architectures are sometimes used alongside traditional

processors, for accelerating specific tasks. Parallel computer

programs are more difficult to write than sequential ones,

because concurrency introduces several new classes of potential

software bugs, of which race conditions are the most common.

Communication and synchronization between the different

subtasks are typically one of the greatest obstacles to getting

good parallel program performance. Parallel computing is

usually accomplished by breaking the problem into independent

parts so that each processing element can execute its part of the

algorithm simultaneously with the others. The processing

elements can be heterogeneous and include resources such as a

single computer with multiple processors, several networked

computers, specialized hardware, or any combination of the

above.

Fig. 1. Architecture of general layered heterogeneous model of parallel

computation

Fig. 1 shows the architecture of the general layered

heterogeneous model of parallel computation. In the general

layered heterogeneous model of parallel computation, the

whole model of a parallel computation would be divided into

three child models: parallel algorithm design model, parallel

programming model and parallel execution model. In the

parallel algorithm design model, algorithm designers focus on

the abstract parameters of the parallel machine. In this layer,

algorithm designers do not need to concern about the concrete

realization of algorithms, which is different from the traditional

parallel development. In the parallel programming model,

based on the different interfaces of hardware and application

programming interface (API) of software, program designers

design the corresponding parameter library and method library

for parallel program. In the parallel execution model, through

the appropriate compiler, parallel program would be compiled

into machine language that runs on the corresponding hardware

and software architecture. The parallel computing model

processes as shown in Fig. 2.

In the layer of algorithm design, developers first design the

parallel algorithm to describe the target problem; after being

processed through the interpretation system, the parallel

algorithm is interpreted into parallel program, which is based

on different hardware and software architectures; furthermore,

with reference to the current system software and hardware

parameters, cost function and calculating behavior, system will

optimize the parallel functions and improve the efficiency; after

being processed though the build system the parallel parts

would be compiled into the corresponding machine language

that runs on different hardware. At last, multiple hardware

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

97

architectures (e.g. cluster, multi-core CPU, multi-core GPU)

could work together to complete the computing tasks.

Fig. 2. Process of the general layered heterogeneous model of parallel

computation

B. OpenCL design

Open CL follows a “close-to-the-silicon” approach, meaning

that it is as close to the hardware implementation as possible,

with just enough abstraction to make the API vendor and

hardware neutral. In a OpenCL system, all computation

resources in a host system are seen as peers. These resources

can include CPUs, GPUs, mobile processors, microcontrollers

and DSPs. OpenCL support both data and task parallel compute

models, and have clearly defined floating point representation

(IEEE 754 with specified rounding and error). The resultant

executable is capable of executing on a number of devices,

dynamically allocating computation resources available.

OpenCL defines a set of models and a software stack. The

models specify how OpenCL is constructed, and how data and

tasks are handled. The software stack on the other hand, shows

a general development work flow, indicating how a developer

should utilize the OpenCL libraries. Other than the standard

OpenCL, there is also a Embedded version of the specification,

named OpenCL Embedded Profile. Compared to the full

specification, there are a number of notable differences

 Embedded profile devices do not support any 64 bit

data. This means that there are no double, along, and

some vector data types

 Embedded profile devices do not have to support 3D

operations.

 EEE 754 rounding requirement is not implemented as

strictly, full IEEE 754 require the rounding to be to the

nearest even number, however in Embedded profile,

only the basic mode of IEEE 754 is supported,

meaning all rounding can be done to the nearest zero.

4. Conclusion

The development and evolution of the parallel computing

model, based on the model's functions and object-oriented

feature, it is sufficient and necessary to divide the parallel

computing model into three layers which are parallel algorithm

design model, parallel programming model and parallel

execution model. Parallel method library and parameter library

were also provided to achieve the comprehensive utilization of

different and heterogeneous computing resources and assign

parallel tasks reasonably to reduce the complexity of parallel

development.

References

[1] C.Y. Lin, J.S. Liu, and Y.C. Chung, S. Q. Chen, and L. T. Yang, “HPM:

a hierarchical model for parallel computations,” International Journal of

High Performance Computing and Networking, 2004, vol. 1, pp. 117–

127.

[2] J.S. Liu, and S. Ghemawat, “MapReduce: Simplified data processing on

large clusters,” Proceedings of the 6th Symposium on Operating System

Design and Implementation. SanFrancisco, USA: USENIX Association,

2004, pp. 137-150.

[3] A.J.C. Bik, B. A. Sanders, B. L. Massingill, Patterns for Parallel

Programming, USA: Addison-Wesley Professional, 2004.

[4] X. H. Sun, “Scalable computing in the multicore era,” Proceedings of the

Inaugural Symposium on Parallel Algorithms, Architectures and

Programming, Hefei: University of Science and Technology of China

Press, Sep. 2008, pp. 118.

[5] Yunquan Zhang, Guoliang Chen, Guangzhong Sun, and Qiankun Miao,

“Models of parallel computation: a survey and classification,” Frontiers

of Computer Science in China, 2007, vol. 1, no. 2, pp. 156–165.

[6] Guoliang Chen, Guangzhong Sun, Yunquan Zhang, and Zeyao Mo,

“Study on Parallel Computing,” Journal of Computer Science and

Technology, Special Issue Dedicated to the 20th anniversary of NSFC,

2006, vol. 21, (5), pp. 665–673.

[7] M. Isard, M. Budiu, and Y. Yu, “Dryad distributed data-parallel programs

from sequential building blocks,” ACM SIGOPS Operating Systems

Review, 2007, vol. 41, no. 3, pp. 59–72.

[8] Guoliang Chen, Qiankun Mao, Guangzhong Sun, and Yun Xu, “Layered

models of parallel computation,” Journal of University of Science and

Technology of China, vol. 38, June 2008.

