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Abstract: Binary division usually use redundant representation 

of partial remainders and quotient digits. VLSI realizations of 

digit-recurrence allows for fast carry-free computation of the next 

partial remainder, and the latter leads to reduce number of the 

required divisor multiples. The binary carry save (CS) number 

system is prevalent in the representation of partial remainders, 

and redundant high radix representation of quotient digits in 

order to reduce the cycle count. Design a space containing four 

division architectures. These are based on binary CS or radix-16 

signed digit (SD) representations of partial remainders. The other 

hand, they use full or partial pre-computation of divisor multiples. 

The uses of smaller multiplexer at the cost two extra adders, where 

one of the operands is constant within all cycles. The quotient 

digits are represented by radix-16 Singed Digits. Synthesis-based 

on the evaluation of VLSI realizations is the best work and the four 

proposed designs compute to reduced power and energy figures in 

the proposed designs at the cost of more area and delay measures. 

 

Keywords: Carry save (CS), digit recurrence binary division, 

energy efficiency, radix -16 signed digit (SD), redundant number 

system 

1. Introduction 

Division is the less frequent operation among the four basic 

arithmetic operations that are carried out within the execution 

of a typical task on digital processors. On the other hand, it is 

the most complex and time consuming operation. VLSI 

realization of dividers is generally based on two classes of 

algorithms, namely, subtractive (aka digit recurrence) and 

multiplicative (aka functional). . Quotient digit selection (QDS) 

is very simple in conventional binary division algorithms, such 

as Non- restoring division scheme.  Where the next quotient bit 

is obtained just by examining the sign of partial remainder. 

However, in order to reduce the number of recurrences, radix-

2h (e.g., h = 4) division schemes have been proposed at the cost 

of more complex QDS, since one out of 2h possible digit values 

is to be selected. This is undertaken via comparing the partial 

remainder with a set of divisor multiples [2]. In order to reduce 

the generation, cost of such multiples, the quotient digits are 

often selected from a signed digit (SD) set [3] (e.g., [−2h−1, 

2h−1]), and converted on the fly into the desired binary output. 

On the other hand, the SD representation of partial remainders 

has been employed to enable borrow free subtraction that 

shortens the cycle time. However, sign detection of SD 

numbers, which is required in QDS, is not a trivial operation.  

 

Despite the less frequent occurrence of division in comparison 

with other basic operations, the several addition operations that 

are embedded within a digit recurrence division contribute to 

extra energy consumption. The division operation can be 

defined as,     

A = QD + R       

Where, 

A – Dividend  

B – Divisor 

Q – Quotient 

R – Remainder 

  In hardware realization of digit recurrence division 

algorithms, it is often postulated that A < B, and the divisor is a 

normalized fraction, such that in radix-2h division 1/2h ≤ B< 1. 

Equation (1) describes the j th recurrence, where W[ j ], q j+1, 

and Q[ j ], represent the j th partial remainder, the next quotient 

digit and the partial quotient, respectively. In addition, 0 ≤ j < 

n, W[0] = A, Q[0] = 0, and n denotes the precision of B and Q 

W[ j + 1] = 2hW[ j] − q j+1B Q[ j + 1] = Q[ j] + 2−h( j+1)q j+1.  

QDS can be simplified via selecting q j+1 from an SD set [−α, 

α].Use the radix-16 digit set [−10, 10], where the next quotient 

digit is obtained as q j+1 = 4qhj+1+ql j+1, with qhj+1, qlj+1 ∈ 

[−2, 2]. The common QDS approach is comparing the shifted 

partial remainder with a set of comparison constants (i.e., a set 

of selected divisor multiples), such that q j+1 is selected based 

where Mk and M k+1 represent two consecutive comparison 

constants, and k ∈ [−α, α]. In practice, all the required 

comparisons take place in parallel.  

           Mk ≤ 2Hw [ j ] < Mk+1 _⇒ q j+1 = k              (1) 

           −ρB≤ W[j + 1] ≤ ρB, ρ= (α/(2h − 1)                (2) 

To speed up the partial remainder computation (PRC), the 

partial remainders are often represented a redundant number 

system. 

The commonly used redundant number system that is 

required for the representation of partial remainders is the 

binary carry save (CS), which roughly doubles the required 

number of bits for representing the same value. Although the 

extra register cost might be affordable, the corresponding extra 

power dissipation could be in question. There are less costly 

redundant number systems that represent the same range of 

numbers exploiting less number of additional bits. For example, 

the case of redundant digit floating point arithmetic uses the 
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radix-16 maximally redundant SD (MRSD) representation that 

requires only 25% extra bits. 

A. Radix-16 signed digit 

A two stage algorithm for fixed point radix-16 signed digit 

division is presented. The algorithm uses two limited precision 

radix-4 quotient digit selection stages to produce the full radix-

16 quotient digit (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15). The 

algorithm requires a two-digit estimate of the (initial) partial 

remainder and a three-digit estimate of the divisor to correctly 

select each successive quotient digit. 

B. Digit recurrence binary division 

Prevent a radix-10-digit recurrence division algorithm that 

decomposes the quotient digits into three parts and requires 

only the computation of two and five times the divisor. 

C. Carry save 

Carry save is a type of digital adder, used in computer micro 

architecture to compute the sum of three or more n-bit number 

in binary. 

2. Proposed system 

Static and semi dynamic DMGS and two different 

representations for partial remainders provide us with a design 

space based on the following options.  

1) Radix-16 quotient digit set: This choice, as in the previous 

relevant works, leads to the reduced number of cycles versus 

the direct generation of quotient bits.  

2) SD representation of quotient digits:  Use [−9, 9] radix-16 

SD set for the intermediate representation of quotient digits.  

3) Semi dynamic DMG: The [−9, 9] multiples of divisor that 

are needed in the PRC are normally obtained within the 

initialization cycle, where ten-way multiplexer is required for 

selecting q j +1 d. 

4) Use of redundant number systems for PRC: The 

advantages of semi dynamic DMG also use CS due to doubling 

representation storage does not seem to be a   proper choice 

when lower power dissipation is desirable. The other choice is 

use higher radix redundant number systems for partial remain 

representation. 

A. Conventional method 

 
Fig. 1.  Overlapped zones for specific quotient digit values 

 

The quotient digit set of our choice is [−9, 9]. In general, the 

next quotient digit q j+1 should be selected from [−α, α], such 

that the convergence condition that is described by (3) where in 

this case (i.e., α = 9), ρ = (a / (16 − 1)) = (9/15) = 0.6. The 

convergence condition (−0.6d ≤ w [j + 1] ≤ 0.6d) is partially 

unfolded as in fig.1, which suggests the comparison of the 

partial remainder with a set of divisor multiples (e.g., −1.6d and 

−0.4d, for q j+1 = −1) in order to decide the value of the next 

quotient digit. However, for some w[j] values (e.g., 16w[j] = 

−.5 d), there may be more than one valid q j+1. For example, 

see the overlapped zone between the dashed lines for q j+1 = 

−1 and q j+1 = 0. To ease the qds process and reduce the number 

of comparisons, it is common to pre compute a set of 

comparison constants, as fixed multiples of divisor, to be used 

for exact qds. the proper range of mk s, fork ∈ [−9, 9], therefore, 

an ease to compute choice is mk = (k + 0.5) d, which leads to 

the case that the exact interval of 16w[ j ] (for a particular value 

of q j+1 = −1) falls between m−2 = −1.5d and m−1 = −.5d (see 

the corresponding bold arrows in fig. 2). 

 

 
Fig. 2.  QDS Architecture 

 

d (k + 0.4) ≤ mk ≤ d (k + 0.6)                    (3) 

B. CS-4 and MRSD-4 designs 

On the other hand, the comparison of an SD or CS number 

(i.e., partial remainder) with a non-redundant one (i.e., 

comparison constants) cannot be trusted to a digit by digit 

comparator (most significant digits first). Replacing the 

operands of (4) with the corresponding truncated operands 

 

Mk −16−t < (Mk )t ≤ (16W [ j])t <16W [ j ]+16−t ⇒Mk– 2  

×16−t  − k D < 16W [ j ] − k D = W [ j + 1]     (4)   

 

 16W [ j ] − 16−t < (16W [ j ])t < (Mk )t ≤ Mk          (5)  

 

Mk +16−t − (k − 1)D > 16W [ j ]−(k − 1)D= W [ j +  1]−ρ D 

< M k − 2 ×16−t  − k D  ⇒ 2 × 16−t  + k Dρ D < Mk   (6)  

 

              Mk + 16−t  − (k − 1) D < ρ D  ⇒ Mk   

            < ρ D − 16−t  + (k − 1) D             (7) 

  

Recalling that ρ = 0.6 and 1/16 ≤ D < 1, and combining the 

inequalities (6) and (7), we get at the following:  

ρD + 2 × 16−t  + k D < ρ D − 16−t  + (k − 1) D ⇒ 
       3 × 16−t < (2ρ − 1) D = 0.2 × D ⇒ 16t > 15/D   (8) 

 

Since the latter should hold for all the values of D (in 
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particular D = 16−1), we need to assert 16 t > 240, which leads 

to t > 1. 

 
Fig. 3.  PRC for designs CS-10 and MRSD-10 

C. CS-4 and MRSD-4 designs 

In order to utilize a smaller selector of divisor multiples, 

propose the architecture of fig.2, where again qds box 

represents fig.3, whose output control signals are shown as 

“mux selector” and “add/sub.” let q j+1 = 6α + β, where α ∈ 

[−1, 1] and β ∈ [0, 3]. The overlapped PRC computes w [j + 1] 

= 16w[j]+6αd via a cfa and a cfs, since w[ j ] is represented in 

binary cs or radix-16 mrsd formats. The operation of this part 

overlaps with the qds. the rest of prc is carried out after qds, 

where βd is selected via the four-input multiplexer, followed by 

computing w [j + 1] = w [ j + 1]’ + βd, via another cfa. 

The straightforward PRC would use a unified carry-free 

adder/subtract (CFA/S) and a 10:1 multiplexer, for the quotient 

digit set [−9, 9].  

D. Initialization AN clean –up 

Converting x to w [0]:  

This is a cost- and delay free operation. In case of CS designs, 

zero-valued bits are inserted as the second bits of CS 

representation. However, in MRSD cases, a zero-valued 

negabit (with logical status 1) is added per each four bits of x to 

lead to the radix-16 MRSD representation of w [0].  

 
Fig. 4.  PRC for designs CS-4 and MRSD-4 

 

Parallel computation of the divisor multiples:  

a) CS-10 and MRSD-10 designs: there are four shifters (for 

2d, 4d, 6d, and 8d) and four parallel adders (for 3d = 2d + d, 5d 

= 4d + d, 7d = 8d − d, and 9d = 8d + d). 

b) CS-4 and MRSD-4 designs: there are only two shift 

operations (for 2d and 6d), and one addition (for 3d = 2d + d). 

 Parallel pre-computation of the truncated comparison 

constants: This is done, as in the following expressions for m0 

to m8. 

CS-10 and MRSD-10 designs: 

     (m1 = d/2, m2 = 3d/2, m3 = 5d/2, m4 = 7d/2, m5 = 9d/2, 

m6 = 5d + m1, m7 = 6d + m1, m8 = 7d + m1, m9 = 8d + m1). 

CS-4 and MRSD-4 designs: 

 (m1 = d/2, m2 = 3d/2, m3 = 2d + m1, m4 = 3d + m1, m5 = 

4d + m1 m6 = 4d + m2, m7 = 6d + m1, m8 = 6d + m2, m9 = 8d 

+ m1). 

Other comparison constants are obtained as m−k = −mk+1, 

for 0 ≤ k ≤ 8. Note that the implementation of initialize block 

uses only one register for storing the d value, while the 

generated constants are directly passed to the prc unit. 

3. Conclusion 

Synthesis in this proposed technique for Binary-64-bit 

division with redundant number system, design space 

containing four architectures based on the pre-computation of 

divisor multiples, CS (Carry save) or MRSD (Maximally 

Redundant Signed Digit) is explored using HDL simulation.    
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