
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

831

Abstract: Binary division usually use redundant representation

of partial remainders and quotient digits. VLSI realizations of

digit-recurrence allows for fast carry-free computation of the next

partial remainder, and the latter leads to reduce number of the

required divisor multiples. The binary carry save (CS) number

system is prevalent in the representation of partial remainders,

and redundant high radix representation of quotient digits in

order to reduce the cycle count. Design a space containing four

division architectures. These are based on binary CS or radix-16

signed digit (SD) representations of partial remainders. The other

hand, they use full or partial pre-computation of divisor multiples.

The uses of smaller multiplexer at the cost two extra adders, where

one of the operands is constant within all cycles. The quotient

digits are represented by radix-16 Singed Digits. Synthesis-based

on the evaluation of VLSI realizations is the best work and the four

proposed designs compute to reduced power and energy figures in

the proposed designs at the cost of more area and delay measures.

Keywords: Carry save (CS), digit recurrence binary division,

energy efficiency, radix -16 signed digit (SD), redundant number

system

1. Introduction

Division is the less frequent operation among the four basic

arithmetic operations that are carried out within the execution

of a typical task on digital processors. On the other hand, it is

the most complex and time consuming operation. VLSI

realization of dividers is generally based on two classes of

algorithms, namely, subtractive (aka digit recurrence) and

multiplicative (aka functional). . Quotient digit selection (QDS)

is very simple in conventional binary division algorithms, such

as Non- restoring division scheme. Where the next quotient bit

is obtained just by examining the sign of partial remainder.

However, in order to reduce the number of recurrences, radix-

2h (e.g., h = 4) division schemes have been proposed at the cost

of more complex QDS, since one out of 2h possible digit values

is to be selected. This is undertaken via comparing the partial

remainder with a set of divisor multiples [2]. In order to reduce

the generation, cost of such multiples, the quotient digits are

often selected from a signed digit (SD) set [3] (e.g., [−2h−1,

2h−1]), and converted on the fly into the desired binary output.

On the other hand, the SD representation of partial remainders

has been employed to enable borrow free subtraction that

shortens the cycle time. However, sign detection of SD

numbers, which is required in QDS, is not a trivial operation.

Despite the less frequent occurrence of division in comparison

with other basic operations, the several addition operations that

are embedded within a digit recurrence division contribute to

extra energy consumption. The division operation can be

defined as,

A = QD + R

Where,

A – Dividend

B – Divisor

Q – Quotient

R – Remainder

 In hardware realization of digit recurrence division

algorithms, it is often postulated that A < B, and the divisor is a

normalized fraction, such that in radix-2h division 1/2h ≤ B< 1.

Equation (1) describes the j th recurrence, where W[j], q j+1,

and Q[j], represent the j th partial remainder, the next quotient

digit and the partial quotient, respectively. In addition, 0 ≤ j <

n, W[0] = A, Q[0] = 0, and n denotes the precision of B and Q

W[j + 1] = 2hW[j] − q j+1B Q[j + 1] = Q[j] + 2−h(j+1)q j+1.

QDS can be simplified via selecting q j+1 from an SD set [−α,

α].Use the radix-16 digit set [−10, 10], where the next quotient

digit is obtained as q j+1 = 4qhj+1+ql j+1, with qhj+1, qlj+1 ∈

[−2, 2]. The common QDS approach is comparing the shifted

partial remainder with a set of comparison constants (i.e., a set

of selected divisor multiples), such that q j+1 is selected based

where Mk and M k+1 represent two consecutive comparison

constants, and k ∈ [−α, α]. In practice, all the required

comparisons take place in parallel.

 Mk ≤ 2Hw [j] < Mk+1 _⇒ q j+1 = k (1)

 −ρB≤ W[j + 1] ≤ ρB, ρ= (α/(2h − 1) (2)

To speed up the partial remainder computation (PRC), the

partial remainders are often represented a redundant number

system.

The commonly used redundant number system that is

required for the representation of partial remainders is the

binary carry save (CS), which roughly doubles the required

number of bits for representing the same value. Although the

extra register cost might be affordable, the corresponding extra

power dissipation could be in question. There are less costly

redundant number systems that represent the same range of

numbers exploiting less number of additional bits. For example,

the case of redundant digit floating point arithmetic uses the

Implementation of VLSI Binary 64 Division

with Redundant Number Systems

M. Lakshmi Priya1, M. Janani2

1M.E. Student, Department of Applied Electronics, TPGIT, Vellore, India
2Assistant Professor, Department of ECE, TPGIT, Vellore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

832

radix-16 maximally redundant SD (MRSD) representation that

requires only 25% extra bits.

A. Radix-16 signed digit

A two stage algorithm for fixed point radix-16 signed digit

division is presented. The algorithm uses two limited precision

radix-4 quotient digit selection stages to produce the full radix-

16 quotient digit (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15). The

algorithm requires a two-digit estimate of the (initial) partial

remainder and a three-digit estimate of the divisor to correctly

select each successive quotient digit.

B. Digit recurrence binary division

Prevent a radix-10-digit recurrence division algorithm that

decomposes the quotient digits into three parts and requires

only the computation of two and five times the divisor.

C. Carry save

Carry save is a type of digital adder, used in computer micro

architecture to compute the sum of three or more n-bit number

in binary.

2. Proposed system

Static and semi dynamic DMGS and two different

representations for partial remainders provide us with a design

space based on the following options.

1) Radix-16 quotient digit set: This choice, as in the previous

relevant works, leads to the reduced number of cycles versus

the direct generation of quotient bits.

2) SD representation of quotient digits: Use [−9, 9] radix-16

SD set for the intermediate representation of quotient digits.

3) Semi dynamic DMG: The [−9, 9] multiples of divisor that

are needed in the PRC are normally obtained within the

initialization cycle, where ten-way multiplexer is required for

selecting q j +1 d.

4) Use of redundant number systems for PRC: The

advantages of semi dynamic DMG also use CS due to doubling

representation storage does not seem to be a proper choice

when lower power dissipation is desirable. The other choice is

use higher radix redundant number systems for partial remain

representation.

A. Conventional method

Fig. 1. Overlapped zones for specific quotient digit values

The quotient digit set of our choice is [−9, 9]. In general, the

next quotient digit q j+1 should be selected from [−α, α], such

that the convergence condition that is described by (3) where in

this case (i.e., α = 9), ρ = (a / (16 − 1)) = (9/15) = 0.6. The

convergence condition (−0.6d ≤ w [j + 1] ≤ 0.6d) is partially

unfolded as in fig.1, which suggests the comparison of the

partial remainder with a set of divisor multiples (e.g., −1.6d and

−0.4d, for q j+1 = −1) in order to decide the value of the next

quotient digit. However, for some w[j] values (e.g., 16w[j] =

−.5 d), there may be more than one valid q j+1. For example,

see the overlapped zone between the dashed lines for q j+1 =

−1 and q j+1 = 0. To ease the qds process and reduce the number

of comparisons, it is common to pre compute a set of

comparison constants, as fixed multiples of divisor, to be used

for exact qds. the proper range of mk s, fork ∈ [−9, 9], therefore,

an ease to compute choice is mk = (k + 0.5) d, which leads to

the case that the exact interval of 16w[j] (for a particular value

of q j+1 = −1) falls between m−2 = −1.5d and m−1 = −.5d (see

the corresponding bold arrows in fig. 2).

Fig. 2. QDS Architecture

d (k + 0.4) ≤ mk ≤ d (k + 0.6) (3)

B. CS-4 and MRSD-4 designs

On the other hand, the comparison of an SD or CS number

(i.e., partial remainder) with a non-redundant one (i.e.,

comparison constants) cannot be trusted to a digit by digit

comparator (most significant digits first). Replacing the

operands of (4) with the corresponding truncated operands

Mk −16−t < (Mk)t ≤ (16W [j])t <16W [j]+16−t ⇒Mk– 2

×16−t − k D < 16W [j] − k D = W [j + 1] (4)

 16W [j] − 16−t < (16W [j])t < (Mk)t ≤ Mk (5)

Mk +16−t − (k − 1)D > 16W [j]−(k − 1)D= W [j + 1]−ρ D

< M k − 2 ×16−t − k D ⇒ 2 × 16−t + k Dρ D < Mk (6)

 Mk + 16−t − (k − 1) D < ρ D ⇒ Mk

 < ρ D − 16−t + (k − 1) D (7)

Recalling that ρ = 0.6 and 1/16 ≤ D < 1, and combining the

inequalities (6) and (7), we get at the following:

ρD + 2 × 16−t + k D < ρ D − 16−t + (k − 1) D ⇒
 3 × 16−t < (2ρ − 1) D = 0.2 × D ⇒ 16t > 15/D (8)

Since the latter should hold for all the values of D (in

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

833

particular D = 16−1), we need to assert 16 t > 240, which leads

to t > 1.

Fig. 3. PRC for designs CS-10 and MRSD-10

C. CS-4 and MRSD-4 designs

In order to utilize a smaller selector of divisor multiples,

propose the architecture of fig.2, where again qds box

represents fig.3, whose output control signals are shown as

“mux selector” and “add/sub.” let q j+1 = 6α + β, where α ∈

[−1, 1] and β ∈ [0, 3]. The overlapped PRC computes w [j + 1]

= 16w[j]+6αd via a cfa and a cfs, since w[j] is represented in

binary cs or radix-16 mrsd formats. The operation of this part

overlaps with the qds. the rest of prc is carried out after qds,

where βd is selected via the four-input multiplexer, followed by

computing w [j + 1] = w [j + 1]’ + βd, via another cfa.

The straightforward PRC would use a unified carry-free

adder/subtract (CFA/S) and a 10:1 multiplexer, for the quotient

digit set [−9, 9].

D. Initialization AN clean –up

Converting x to w [0]:

This is a cost- and delay free operation. In case of CS designs,

zero-valued bits are inserted as the second bits of CS

representation. However, in MRSD cases, a zero-valued

negabit (with logical status 1) is added per each four bits of x to

lead to the radix-16 MRSD representation of w [0].

Fig. 4. PRC for designs CS-4 and MRSD-4

Parallel computation of the divisor multiples:

a) CS-10 and MRSD-10 designs: there are four shifters (for

2d, 4d, 6d, and 8d) and four parallel adders (for 3d = 2d + d, 5d

= 4d + d, 7d = 8d − d, and 9d = 8d + d).

b) CS-4 and MRSD-4 designs: there are only two shift

operations (for 2d and 6d), and one addition (for 3d = 2d + d).

 Parallel pre-computation of the truncated comparison

constants: This is done, as in the following expressions for m0

to m8.

CS-10 and MRSD-10 designs:

 (m1 = d/2, m2 = 3d/2, m3 = 5d/2, m4 = 7d/2, m5 = 9d/2,

m6 = 5d + m1, m7 = 6d + m1, m8 = 7d + m1, m9 = 8d + m1).

CS-4 and MRSD-4 designs:

 (m1 = d/2, m2 = 3d/2, m3 = 2d + m1, m4 = 3d + m1, m5 =

4d + m1 m6 = 4d + m2, m7 = 6d + m1, m8 = 6d + m2, m9 = 8d

+ m1).

Other comparison constants are obtained as m−k = −mk+1,

for 0 ≤ k ≤ 8. Note that the implementation of initialize block

uses only one register for storing the d value, while the

generated constants are directly passed to the prc unit.

3. Conclusion

Synthesis in this proposed technique for Binary-64-bit

division with redundant number system, design space

containing four architectures based on the pre-computation of

divisor multiples, CS (Carry save) or MRSD (Maximally

Redundant Signed Digit) is explored using HDL simulation.

References

[1] M. Ercegovac and T. Lang, Digital Arithmetic. San Mateo, CA,

USA:Morgan Kaufmann, 2003.

[2] D. L. Harris, S. F. Oberman, and M. A. Horowitz, “SRT division

architectures and implementations,” in Proc. 13th IEEE Symp. Comput.

Arithmetic, Jul. 1997, pp. 18–25.

[3] A. Avizienis, “Signed-digit number representations for fast parallel

arithmetic,” IRE Trans. Electron. Comput., vol. 10, no. 3, pp. 389–400,

Sep. 1961.

[4] H. A. H. Fahmy and M. J. Flynn, “The case for a redundant format in

floating point arithmetic,” in Proc. 16th IEEE Symp. Comput. Arithmetic,

Santiago de Compostela, Spain, Jun. 2003, pp. 95–102

[5] S. Gorgin and G. Jaberipur, “A family of high radix signed digit adders.”

in Proc. 20th IEEE Symp. Comput. Arithmetic, Tübingen, Germany, Jul.

2011, pp. 112–120.

[6] W. Liu and A. Nannarelli, “Power efficient division and square root unit,”

IEEE Trans. Comput., vol. 61, no. 8, pp. 1059–1070, Aug. 2012.

[7] J. Ebergen and N. Jamadagni, “Radix-2 division algorithms with an

overredundant digit set,” IEEE Trans. Comput., vol. 64, no. 9, pp. 2652–

2663, Sep. 2015.

[8] A. Nannarelli and T. Lang, “Low-power divider,” IEEE Trans. Comput.,

vol. 48, no. 1, pp. 2–14, Jan. 1999.

[9] A. Nannarelli, “Performance/power space exploration for binary64

division units,” IEEE Trans. Comput., vol. 65, no. 5, pp. 1671–1677, May

2016

[10] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Digit-recurrence

dividers with reduced logical depth,” IEEE Trans. Comput., vol. 54, no.

7, pp. 837–851, Jul. 2005.

[11] A. Nannarelli and T. Lang, “Low-power division: Comparison among

implementations of radix 4, 8 and 16,” in Proc. 14th IEEE Symp. Comput.

Arithmetic, Apr. 1999, pp. 60–67.

[12] G. S. Taylor, “Radix 16 SRT dividers with overlapped quotient selection

stages: A 225 nanosecond double precision divider for the S-1 Mark IIB,”

in Proc. IEEE 7th Symp. Comput. Arithmetic (ARITH), Jun. 1985, pp.

64–71.

[13] T. M. Carter and J. E. Robertson, “Radix-16 signed-digit division,” IEEE

Trans. Comput., vol. 39, no. 12, pp. 1424–1433, Dec. 1990.

[14] G. Jaberipur and B. Parhami, “Efficient realisation of arithmetic

algorithms with weighted collection of posibits and negabits,” IET

Comput. Digit. Techn., vol. 6, no. 5, pp. 259–268, Sep. 2012.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

834

[15] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast decimal floating-point

division,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no.

9, pp. 951–961, Sep. 2006.

[16] A. Kaivani, A. Hosseiny, and G. Jaberipur, “Improving the speed of

decimal division.” IET Comput. Digit. Techn., vol. 5, no. 5, pp. 393–404,

Sep. 2011.

