
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

739

Abstract: It is believed that the Outliers have a big one Impact

on the performance of the Big Data. However, the reason for which

discharges are caused is complicated. The precedents work mainly

focus on detecting Outliers, optimizing the level of programming

and Analysis of the root cause. These methods cannot provide

Valuable information to help users optimize their programs. In

this paper, propose new approach, a general method that

incorporates Framework and characteristics of the system for the

analysis of the root cause of outliers in the big data system. Big

Roots considers the features from the Big Data pane, like the

random read / write bytes and time to collect useless JVM data, as

well as system resources use as CPU, I / O and network, which is

able to detect Internal and external causes of Outliers. The

experimental results prove that this technique is effective in

identifying the root cause of Outliers and provides useful

indications for performance optimization.

Keywords: Big Data, root cause analysis, spark, Outlier.

1. Introduction

Today's computer services are purchased all over the world

through the use of data centers in the cloud. These are based on

the Internet Virtual computing environments are distributed.

Systems composed of hundreds and thousands of

interconnected nodes and are essential for consumer

compliance Quality of service and business objectives. Data

centers in the cloud strongly exploit the virtualization to be

formed groups of computers able to distribute effectively

parallelizable frames such as MapReduce and Spark all this

requires large amounts of calculation Power and storage

capacity to operate on a large scale. This has subsequently, it

promoted huge consumer acceptance for Cloud Based.. This

promoted the formation of cloud data centers composed of

Thousands of nodes and millions of virtualizes based on the

cloud services, leading to a larger scale and to the complexity

of the system among the components that interact. Then

manifestation of the previously invisible emerging system the

behavior has arisen in these distributed systems, represents a

significant threat to effective supply Performance of the

virtualized service.

In this paper, we propose, a general method for outlier

detection. Incorporating the features of both the framework and

the system the analysis of the root cause of the outlier which

covers a larger one spectrum of causes and provides intuitive

guide to performance improvement. The idea behind this

approach is to compare the characteristics of the outliers with

the normal tasks in The same scenario If the value of a delay

function is deviated for much of the normal task, we treat this

feature like the root cause of the delay This method outliers

solves the drawbacks. Of previous work and provides a useful

guide for the future performance optimization. Furthermore, the

statistical rules are applied to different characteristics to reduce

false positive. For example, we can filter the characteristics that

represent the blocking time are many less than the duration of

the activity. The reason is that if the time elapsed in such

characteristics it is insignificant, so these characteristics would

not do it the performance of the task is strongly affected.

2. Motivation

Data processing framework are dividing the data in small

pieces and perform the operation in parallel. Only when each

activity ends within a level the application can proceed to the

next phase. If certain tasks are slower than the rest in the same

phase, the execution of the whole application is slowed down

by these activities called Outliers.

A. Objectives

 To find outliers in specific jobs.

 To detect both internal and external root causes of outliers.

 To improve performance.

3. Related work

Literature survey is the most important step in any kind of

research. Before start developing we need to study the previous

papers of our domain which we are working and on the basis of

study we can predict or generate the drawback and start working

with the reference of previous papers.

A. Slower Nodes or Outliers

Outlier nodes are the nodes on which a task takes much

longer than normal to finish. Outlier nodes increase execution

time and reduce cluster throughput. Outlier nodes degrade the

cluster throughput. Outlier tasks are a hurdle in getting faster

completion of applications on modern frameworks.

Comparative Analysis of Outlier Mitigation

Techniques

Sonali Dudhal1, S. B. Deshmukh2

1M.E. Student, Department of Information Technology, Pune Institute of Computer Technology, Pune, India
2Professor, Department of Information Technology, Pune Institute of Computer Technology, Pune, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

740

B. Causes of Outlier

1) Internal factors

 Resource capacity of worker nodes is heterogeneous.

 Tasks running on same worker node compete for

resources among themselves.

2) External factors

 Co-hosted applications compete for resources.

 Input data may be skewed.

 Unacceptably slow speed of remote input/output source.

 Hardware fault.

In this section, we briefly review the related work on outliers

detection system and their different techniques.

1) MapReduce: Simplified Data Processing on Large

Cluster: MapReduce is a data processing approach, in which a

single machine acts as a master, assigning map / reduce

activities to all the other machines connected in the cluster.

Technically, it could be considered as a programming model,

which is applied to generate, implement and generate large data

sets. The map reduction feature was adopted and implemented

in several organizations such as Google, Apache Hadoop and

Riak. Programmers can easily learn MapReduce without having

any previous experience. Eliminates load balancing, fault

tolerance, serialization and parallelization needs.

2) Outliers Root-Cause and Impact Analysis for Massive-

scale Virtualized Cloud Data centres: This paper presents an

empirical analysis of two large-scale virtualized cloud data

centers to determine the impact and root cause of stragglers;

Emerging phenomena found within distributed systems on a

scale. The results were used to guide the development of a

detection system for late laggards by combining off-line

analysis and agent-based monitoring.

3) MrHeter: improving MapReduce performance in

heterogeneous environments: We analyze the causes of poor

MapReduce performance in heterogeneous groups, and the

most important is the unreasonable assignment of tasks between

nodes with different computational capabilities. On this basis,

we propose to MrHeter, which separates the MapReduce

process in the phase of random mixing of the map and the

reduce operation phase, then builds the optimization model

separately for them and obtains a different assignment of tasks

for heterogeneous nodes according to the capacity of

calculation.

4) Detection of Performance Anomalies in Web-based

Applications: Performance management and reliability are two

of the critical problems of business-critical applications. The

ability to detect the occurrence of failures and performance

anomalies has attracted the attention of researchers in recent

years. In reality, this is a difficult problem, since a visible

change in performance can be due to natural causes (for

example, changes in workload, updates) or due to an internal

anomaly or an error that can end in a performance error or

application error.

5) Online Anomaly Prediction for Robust Cluster Systems:

The anomaly forecasting scheme generates early alarms for

imminent system anomalies and suggests possible causes of

anomaly. Specifically, we use methods of Bayesian

classification to capture various symptoms of abnormality and

to infer causes of anomaly. Markov models are introduced to

capture changing patterns of different measurement metrics.

More importantly, our scheme combines Markov models and

Bayesian classification methods to predict when an anomaly of

the system will appear in the near future and what are the

possible causes of the anomaly. To our knowledge, our work

provides the first flow-based mining algorithm to predict

system anomalies.

6) Proactive Straggler Avoidance using Machine Learning:

This paper predicts the task execution time Facebook trace

analysis using the Pearson’s correlation coefficient. Numbers

of relevant parameters are collected from the Facebook traces

which are based on the input. System flow is as follows: Firstly,

it collects the job history per node i.e. what resources are been

utilized by the job and the time required for its execution.

Second it extracts the feature from job history log like start time,

end time etc. And finally schedules the job as per the policy i.e.

the machine learning algorithm being utilized. Resource

utilization parameters used are as follows: CPU Usage at Entry

i.e. CPU usage at particular moment, physical Memory at Entry

i.e. Physical memory utilization like virtual Memory At Entry,

local Read Rate At Entry, local Write Rate At Entry, remote

Read Rate At Entry, remote Write Rate At Entry, Max number

of total tasks executing simultaneously which is called Physical

memory peak. Max virtual memory utilization at any point etc.,

using which straggler detection becomes easier.

7) Insight and Reduction of Map Reduce Stragglers in

Heterogeneous Environment: This paper proposes an approach

for problem solving based on the relationship between system

parameter. This approach adjusts the amount of task slots of

task of node dynamically to match the processing power,

according to current task progress wrangler avoid the resource

wastage by removing the need of replication of tasks. In case of

over resource utilized scenario, the execution time of the task is

prolonged, so using the resource utilization we can identify

which task is performing slower and we can consider it as

straggler.

8) Heterogeneity and Dynamicity of Clouds at Scale Google

Trace Analysis: This paper analyses the first monitoring data

publicly available from a large multi-purpose group for better

understanding of the challenges in developing effective cloud-

based resource developers. The most important feature of the

workload is the heterogeneity: in the types of resources (for

example, core: RAM per machine) and their use (for example,

the duration and resources required). This heterogeneity

reduces the effectiveness of traditional slot and core

programming. Furthermore, some activities are limited in terms

of the type of machines they can use, which increases the

complexity of resource allocation and complicates the

migration of activities.

9) BigRoots: An Effective Approach for Root-cause Analysis

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

741

of Stragglers in Big Data System: This paper presents the

general method for straggler detection, which takes into

consideration both the system and the framework features

called as the root-cause analysis in big data systems. Features

like system resource utilization such as CPU, I/O and network

and big data framework logs, are used which is able to detect

both internal and external root causes of stragglers. Data

locality is one of the features of big data log which helps in

identifying from where the data needs to be fetched and time

require for fetching it from local or remote node. System

features used are CPU utilization, I/O or disk utilization and

network utilization are being considered.

10) Wrangler: Predictable and Faster Jobs using Fewer

Resources: This paper proposes the system that predicts

stragglers using an interpretable linear modeling technique.

Wrangler avoid the need replication of tasks to avoid the

resource wastage. It uses the Node level features like CPU,

Network (CPU idle time, system and user time and speed of the

CPU), Disk (Number of bytes sent and received, statistics of

remote read and write, statistics of RPCs, etc.) and, Memory

utilization (Amount of virtual, physical memory available,

amount of buffer space, cache space, shared memory space

available, etc.), System-level features like states of thread i.e.

waiting, running, terminated, blocked, etc .

11) Reducing Late-Timing Failure at Scale: Straggler

RootCause Analysis in Cloud Datacenters: This paper proposes

a method to for identifying straggler root-causes by analyzing

key parameters within large-scale distributed systems, and also

to determine the correlation between straggler occurrence and

factors including resource contention, task concurrency, and

server failures. Features used for the straggler detection are

Data skew, high resource utilization (CPU, memory, disk),

network package loss.

12) Reining in the Outliers in Map-Reduce Clusters using

Mantri: This paper proposes a system for detecting the

stragglers which concerns about the global resources. It

estimates the remaining time for completion of task and time to

run the new copy of data and avoids the redundant copies of

data. Following are the features considered for straggler

detection: Data Skew, Crossrack Traffic, CPU utilization. But

the disadvantage associated with this technique is that Mantri

needs large amount of time to detect stragglers and leading to

wastage of time resulting in job delay.

13) Straggler Root-Cause and Impact Analysis for Massive-

scale Virtualized Cloud Datacenters: This paper presents an

empirical analysis of two production large-scale virtualized

Cloud datacenters to ascertain the impact and root-cause of

stragglers. Features used for straggler detection are: High CPU

utilization, unhandled operational access request, Network

package loss, Hardware faults. But the disadvantage associated

with this technique is that it uses correlation & diagnosis

method to identify the root causes of stragglers. However, their

approach is at job level and does not provide specific reason to

the cause of stragglers.

14) Improving Resource Utilization in MapReduce: For

improve resource utilization, this paper propose a technique

called as resource stealing which enables the running tasks to

steal resources reserved for idle slots and provide them back

when new tasks are assigned. Resource stealing takes care that

the wasted resources are fully utilized without interfering with

normal job scheduling. It measures the user-perceivable job

execution time which helps to provide the deterioration or

improvement of resource utilization. For the experimental

purpose it utilizes the word count which is best example for I/O

intensive application.

15) Spark: Cluster Computing with Working Sets: We

propose a new framework called Spark that supports these

applications while maintaining MapReduce scalability and fault

tolerance. To achieve these goals, Spark introduces an

abstraction called Resilient Distributed Datasets (RDD). An

RDD is a read-only collection of partitioned objects in a set of

machines that can be rebuilt if a partition is lost. Spark can

exceed 10-fold Hadoop in iterative machine learning processes

and can be used to interactively query a 39 GB data set with a

response time of less than one second.

Table 1

Comparative study

S. No. Paper Title Authors Feature Used for detection/ causes of outliers

1 BigRoots: An Effective Approach for

Root-cause Analysis of Stragglers in

Big Data System

Honggang Zhouy, Yunchun Liy, Hailong

Yangy, Jie Jia, Wei Liy

CPU utilization, disk utilization, network utilization,

Framework Features like Spark logs file, resource

features and time features.

2 Straggler Root-Cause and Impact

Analysis for Massive-scale Virtualized

Cloud Datacenters

Peter Garraghan, Xue Ouyang, Renyu Yang,

David McKee, Jie Xu.

High CPU utilization, Unhandled operational access

request, Network package loss, Hardware faults.

3 Straggler Detection in Parallel

Computing Systems through Dynamic

Threshold Calculation

Xue Ouyang, Peter Garraghan, David Mckee,

Paul Townend, Jie Xu

Service QoS (specifically timing constraints), task

execution progress, and the cluster resource usage.

4 Reining in the Outliers in Map-Reduce

Clusters using Mantri

Ganesh Ananthanarayanan, Srikanth Kandula,

Albert Greenberg, Ion Stoica, Yi Lu, Bikas

Saha, Edward Harris

Data Skew, Crossrack Traffic, CPU utilization.

5 Wrangler: Predictable and Faster Jobs

using Fewer Resources

Neeraja J. Yadwadkar, Ganesh

Ananthanarayanan, Randy Katz

Node level features like CPU, Network, Disk and,

Memory utilization, System-level features like

states of thread.

6 Reducing Late-Timing Failure at Scale:

Straggler Root-

Cause Analysis in Cloud Datacenters

Xue Ouyang, Peter Garraghan, Renyu Yang,

Paul Townend, Jie Xu

Data skew, high resource utilization (CPU, memory,

disk), network package loss.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

742

4. Existing approaches

 Lot of work has been done in this field because of its

extensive usage and applications. In this section, some of the

approaches which have been implemented to achieve the same

purpose are mentioned. These works are majorly differentiated

by the algorithm for outliers detection system.

Many existing works have proposed speculative execution

for Mitigating the impact of outliers. Current Big Data Frames

They have already adopted the speculative execution method,

starting a replicated task on another machine if an activity is

much slower than others. Google says so Speculative execution

improves work response time a 44% offer the longest

Approximate completion time speculative strategy for

heterogeneous cluster. They are based on the rate of progress to

detect possible laggards and start only speculative activities in

fast nodes with high rate of progress. Focus on the small it

works and introduces Dolly that clones all the tasks of a small

job. To avoid waiting during speculation. Dolly achieves

significant results Accelerate for small jobs and consume only

an additional 5% However, all these speculative methods have

the same shortage. Speculation consumes additional resources

as a result, production groups perform many jobs at the same

time the speculative execution will contend the resources with

normal work. Speculative tasks are not necessary and waste

resources in production environment.

Existing techniques used for Outlier Detection or Task

Scheduling:

a) Dolly

b) Mantri

c) Wrangler

d) LATE

e) SAMR

f) ESAMR

g) Multi-task learning

h) Blacklisting

i) Speculative Execution

5. Proposed approach

Fig. 1. Proposed approach

The proposed architecture tries to identify that which worker

node should be assigned the task; this is done through

distributed machine learning algorithm. It requires some time

to carry out this processing, if the algorithm identifies whether

the node is performing the task with slow rate then that node is

blacklisted for short period of time.

6. Conclusion

Big data consists of the large variety of data that may be

diverse in nature. When this data is divided into small pieces

for the processing, then that pieces are called tasks. Big data is

the data which contains both structured and unstructured data,

for handling such huge amount of data, popular frameworks

have been developed which are MapReduce, Dryad, Spark

which require vast amounts of compute power and storage

capacity to operate. These frameworks are useful for extracting

useful information. They divide the job into small pieces or

chunks called as tasks. In certain situations, it happens that, one

task gets slower as compared to another task, this phenomenon

is called as Outliers, as a result the execution of the entire

application is slowed down by these tasks. Outliers adversely

affect the performance of big data systems. Many a times High

CPU utilization, High disk utilization, Network package loss,

Hardware faults, Data skew, etc. are the factors responsible for

the happening of outliers. So as to overcome the outliers,

BigRoots, Mantri, Dolly, Wrangler, etc. techniques are

attempted and provides guidance for performance optimization.

The idea behind this approach is to compare the features of

outliers with normal tasks in the same stage and if value of a

outliers feature deviates greatly from that of normal task, then

this feature is treated as the root cause of outliers. In this project,

we will try propose the system that will analyze more features

that results in outliers, and avoid the same, which will help to

optimize the performance of the Big Data Systems.

References

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” in Conference on Symposium on Operating Systems

Design & Implementation, 2008, pp. 10–10.

[2] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Outlier root-

cause and impact analysis for massive scale virtualized cloud

datacenters,” IEEE Transactions on Services Computing, 2017.

[3] Xiao Zhang, Yanjun Wu, Chen Zhao, “MrHeter: improving MapReduce

performance in heterogeneous environments,” in Springer Science

Business Media, New York 2016.

[4] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,

“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”

in Proceedings of the Third ACM Symposium on Cloud Computing. ACM,

2012, p. 7.

[5] J. P. Magalhaes and L. M. Silva, “Detection of performance anomalies in

web-based applications,” in Network Computing and Applications (NCA),

2010 9th IEEE International Symposium on. IEEE, 2010, pp. 60–67

[6] X. Gu and H. Wang, “Online anomaly prediction for robust cluster

systems,” in Data Engineering, 2009. ICDE’09, IEEE 25th International

Conference on. IEEE, 2009, pp. 1000–1011.

[7] Arefin, V. K. Singh, G. Jiang, Y. Zhang, and C. Lumezanu, “Diagnosing

data center behavior flow byflow,” in Distributed Computing Systems

(ICDCS), 2013 IEEE 33rd International Conference on. IEEE, 2013, pp.

11–20.

[8] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior learning

for predicting performance anomalies in virtualized cloud systems,” in

Proceedings of the 9th international conference on Autonomic computing.

ACM, 2012, pp. 191–200.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

743

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed

data-parallel programs from sequential building blocks,” in ACM SIGOPS

operating systems review, vol. 41, no. 3. ACM, 2007, pp. 59–72.

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets.” Hot Cloud, vol. 10, no.

10-10, p. 95, 2010.

