
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

489

Abstract: In this paper we discuss and create a MQTT based

Secured home automation system, by using temperature sensors

and using ESP8266model as the network gateway, here we have

implemented MQTT Protocol for transferring & receiving sensor

data and finally getting access to those sensor data, also we have

implemented ACL (access control list) to provide encryption

method for the data and finally monitoring those data on webpage

or any network devices. ESP8266 has been used as a gateway or

the main server in the whole system, which has various sensor

connected to it via wired or wireless communication.

Keywords: Message Queuing Telemetry Transport (MQTT),

ESP8266, Mosquitto, Home automation

1. Introduction

Home automation refers to remotely monitoring the

conditions of home and performing the required actuation.

Through home automation, household devices such as TV, light

bulb, fan, etc. are assigned a unique address and are connected

through a common home gateway. These can be remotely

accessed and controlled from any PC, mobile or laptop. This

can drastically reduce energy wastage and improve the living

conditions besides enhancing the indoor security.

Owing to the rapid growth in technology, the devices in the

recent past are becoming smart. The real world devices are

being equipped with intelligence and computing ability so that

they can configure themselves accordingly. Sensors connected

to embedded devices along with the low power wireless

connectivity is facilitates to remotely monitor and control the

devices. This forms an integral component of Internet of

Things(IoT) network. Internet of Things can be considered as a

network of devices that are wirelessly connected so that they

communicate and organize themselves based on the predefined

rules. However these devices are constrained in terms of their

resources. Hence light weight protocols such as MQTT, CoAP

etc. are used for the data transmission over wireless

connectivity. There are so many kinds of radio modules out of

which GSM, 3G, WiFi, Bluetooth, Zigbee, etc. are common.

However, owing to the surging number of WiFi hotspots and

range sufficient to perform the required control and monitoring,

WiFi is chosen as the mode of communication in the prototype

and the devices are controlled through MQTT protocol

implemented using ESP8266.

Organization of the paper is as follows: A brief overview

about the MQTT protocol is presented in section II. The related

work that has already been done in this area is discussed in

section III. In section IV the implementation details about the

network setup, hardware and software used is briefed. Results

from developed prototype are discussed in section V. Section

VI presents the conclusions and future scope of work.

2. Message queuing telemetry transport

Message Queuing Telemetry Transport (MQTT) is a light

weight transport protocol that efficiently uses the network

bandwidth with a 2 byte fixed header [1]. MQTT works on TCP

and assures the delivery of messages from node to the server.

Being a message oriented information exchange protocol,

MQTT is ideally suited for the IoT nodes which have limited

capabilities and resources. MQTT was initially developed by

IBM [2] in 1999 and recently has been recognized as standard

by Organization for the Advancement of Structured

Information Standards (OASIS) [3].

MQTT is a publish/subscribe based protocol. Any MQTT

connection typically involves two kinds of agents: MQTT

clients and MQTT public broker or MQTT server. Data that is

being transported by MQTT is referred to as application

message. Any device or program that is connected to the net-

work and exchanges application messages through MQTT is

called as an MQTT client. MQTT client can be either publisher

or subscriber. A publisher publishes application messages and

subscriber requests for the application messages. MQTT server

is a device or program that interconnects the MQTT clients. It

accepts and transmits the application messages among multiple

clients connected to it. Devices such as sensors, mobiles etc. are

considered as MQTT client. When an MQTT client has certain

information to broadcast, it publishes the data to the MQTT

broker. MQTT broker is responsible for data collection and

organization. The application messages that are published by

MQTT client is forwarded to other MQTT clients that subscribe

to it. MQTT is designed to simplify the implementation on

client by concentrating all the complexities at the broker.

Publisher and subscriber are isolated, meaning they need not

have to know the existence or application of other

Home Automation System using ESP8266

based MQTT

S. Balakrishnan1, B. Madhurekha2, N. Shobana3, S. Sherlyn Selshiya4, G. Sathyabama5

1Assistant Professor, Department of ECE, The Kavery Engineering College, Salem, India
2,3,4,5Student, Department of ECE, The Kavery Engineering College, Salem, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

490

Fig. 1. Establishing, maintaining and terminating MQTT connection

Packets are exchanged before transmitting the application

messages, control based on the QoS associated with them. An

MQTT control packet consists of a fixed header, a variable

header and payload. CONNECT, CONNACK, PUBLISH,

PUBACK, PUBREC, PUBREL, SUBSCRIBE, SUBACK, etc.

are some of the MQTT control packets [4] exchanged between

MQTT clients and MQTT server. Topic in MQTT provide the

routing information. Each topic has a topic name and topic

levels associated with it. There may be multiple topic levels

separated by / in a topic tree. Wildcard characters such as # and

+ are used to match multiple levels in a topic. Featuring the

queuing system, MQTT server buffers all the messages if client

is offline and delivers them to the client when the session is

enabled.

A. Establishing a connection

Upon the successful establishment of network between the

MQTT client and the MQTT server, control packets are

exchanged between the client and the server. The client that

wishes to connect to the MQTT server sends a CONNECT

packet to the server specifying its identifier, flags, protocol

level and other fields. The server acknowledges the client with

the specified identifier through CONNACK packet with a

return code denoting the status of connection.

B. Publishing the application messages

If the client desires to be a publisher, it sends a PUBLISH

packet to the server. This packet contains details about the QoS

level of transmission, topic name, payload, etc. MQTT supports

three levels of Quality of Service (QoS) [5] to the client. If the

application messages are transmitted at QoS 0, the client does

not receive any acknowledgment for the published packet. For

QoS 1, the server acknowledges the

Fig. 2. Client publishing messages to the server with various QoS

Published packet with PUBACK including the packet

identifier. However in QoS 2, four packets are exchanged. The

server acknowledges the receipt of PUBLISH packet with the

PUBREC packet. MQTT client then sends a packet to release

publish with a PUBREL packet. The server then sends the

fourth packet PUBCOMP, indicating the completion of

publishing the application message on the given topic.

C. Subscribing to a topic

If the MQTT client want to subscribe to the application

messages published on topic, it sends the SUBSCRIBE packet

along with the topic name indicated in UTF-8 encoding. The

server acknowledges the subscription with SUBACK packet

along with a return code denoting the status of request. Once

the subscription is successful, the application messages on the

specified topic are forwarded to the client with the maximum

QoS. To unsubscribe a topic, the client sends an

UNSUBSCRIBE packet to the server which acknowledges it

with the UNSUBACK packet.

D. Maintaining the connection alive

After a certain time-out, the connection between the client

and the server is terminated. To maintain the connection, the

client indicates that it is alive by transmitting a PINGREQ

packet to the server. The MQTT server responds to the client

with the indicated identifier with a PINGRESP packet and

maintains the connection alive.

Fig. 3. Client subscribing and unsubscribing to the topic

E. Terminating the connection

To terminate the connection, the MQTT client sends a

DISCONNECT packet to the server. The server does not

acknowledge this packet. However all the application messages

related to the client will be flushed off and the client is

disconnected from the server.

3. Related work

In [6], the authors discussed about the existing architectures

for home automation and proposed a novel home automation

architecture giving space to all the new IoT protocols. In [7], a

prototype is designed to perform home automation through

SMS. GSM network and the devices are bridged using a micro-

controller. It also focuses on the security aspects in the

networking and proposes a secure, reliable and adaptable home

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

491

automation system. The research work done in [8] proves that

MQTT is better than HTTP for the nodes with constrained

resources. It has been proven that data transmission through

MQTT consumes only about 0.05% of battery/hour by using 3G

for network connectivity.

4. Implementation details

A. Network setup

The intensity of light is sensed using LDR sensor connected

to ESP8266 development board. ESP8266 development board

processes the sensor data and performs actuation. It acts as a

gateway for data transmission through WiFi. ESP8266 is

configured as MQTT client publishing the sensor data to the

MQTT broker and subscribing for the commands to control the

actuation. LED and buzzer is used as actuators in the prototype.

ESP8266 module publishes the sensor data under the topic

′esp\sense′. It subscribes for the topic ′esp\led′ and ′esp\buzzer′

to receive commands to control LED and

Fig. 4. Message transmission through MQTT

Fig. 5. Network Setup

Fig. 6. ESP8266 based Node MCU development board

Buzzer connected to the GPIOs of ESP8266. MQTT

mosquitto broker is set up for ESP8266 to publish and subscribe

to the application messages. Other MQTT clients such as PCs

and Mobiles can connect to MQTT server through existing

communication technologies such as Ethernet, 2G, 3G, WiFi

etc.

B. ESP8266

ESP8266 [9] is a low cost development board that

consolidates GPIOs, I2C, UART, ADC, PWM and WiFi for

rapid prototyping. Powered by 3.3V supply, ESP8266 together

with voltage regulator and USB to serial is packaged as ESP-12

module. Applications can be developed on this board through

Arduino IDE or Lua based Esp lorer.

Fig. 7. Application UI on My MQTT Android application

C. Software setup

Fig. 8. Application UI on Computer

Arduino IDE is used to program the ESP8266 module as

MQTT client. Mosquitto [10], an open source MQTT broker is

implemented on Windows PC. It uses two services mosquitto

Pub and mosquitto Sub to publish and subscribe to the

application messages. MQTT broker is set up with the broker

URL of the host IP of the PC on which Mosquitto broker is

installed on port 1883. MQTTL ens [11], a Google Chrome

based application is used as MQTT client that subscribes for the

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-2, February-2019

www.ijresm.com | ISSN (Online): 2581-5792

492

sensor data and publishes the commands to control GPIOs of

ESP8266. This sniffs the application messages that is being

transmitted between Mosquitto MQTT broker and ESP8266.

My MQTT, an android application is also another MQTT client

that connects to the Mosquitto MQTT broker and publishes or

subscribes to a topic.

5. Conclusion

This paper presented implementation of home automation

system using ESP8266 based MQTT.

References

[1] MQTT v3.1 protocol specification.

http://public.dhe. ibm.com/software/dw/webservices/ws-MQTT/MQTT-

v3r1.html

[2] Hivemq. [Online]. Available: http://www.hivemq.com/blog/ mqtt-

essentials-part-1-introducing- mqtt

[3] MQTT version 3.1.1 becomes an oasis standard. [On-line].

 Available: https://www.oasis-open.org/news/announcements/mqtt-

version-3-1-1-becomes-an-oasis-standard

[4] Oasis MQTT version 3.1.1. [Online]. Available: http://docs.oasis-open.

org/MQTT/MQTT/v3.1.1/os/mqtt-v3.1.1-os.html

[5] Mqtt version 3.1.1 oasis standard. [Online]. Available: http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

[6] S. Nasrin and P. J. Radcliffe, “Novel protocol enables diy home

automation,” in Telecommunication Networks and Applications

Conference (ATNAC), 2014 Australasian, Nov 2014, pp. 212–216.

[7] H. ElKamchouchi and A. ElShafee, “Design and prototype

implementation of sms based home automation system,” in Electronics

Design, Systems and Applications (ICEDSA), 2012 IEEE International

Conference on, Nov. 2012, pp. 162–167.

[8] A. Kumar and S. Johari, “Push notification as a business enhancement

technique for e-commerce,” in 2015 Third International Conference on

Image Information Processing (ICIIP), Dec 2015, pp. 450–454.

[9] Node mcu–an open-source firmware based on esp8266 wifi-soc. [Online].

Available: http://nodemcu.com/index en.html/

[10] Eclipse. Mosquitto an open source mqtt v3.1/v3.1.1 broker. [Online].

Available: http://mosquitto.org/

[11] Mqtt lens-chrome web store.

https://chrome.google.com/webstore/detail/mqttlens/hemojaaeigabkbcoo

kmlgmdigohjobjm?hl=en

