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Abstract: Recently, executing workflow applications is become 

common in the cloud because this causes workflow application to 

use resources on demand. This is also advantage over traditional 

workflow scheduling algorithms that only aims on optimizing the 

execution time. It includes method to minimize execution cost of a 

workflow in clouds under a deadline constraint and uses a 

metaheuristic algorithm L-ACO and a simple heuristic ProLiS. 

ProLiS distributes the deadline to each task using upward rank 

mechanism, and uses a two-step list scheduling methodology: rank 

tasks and sequentially allocates each task a service which meets the 

sub-deadline and minimizes the cost. L-ACO uses ant colony 

optimization for performing deadline-constrained cost 

optimization and uses the same deadline distribution and service 

selection methods as ProLiS to build solutions The MMAS 

framework is utilized for the pheromone updating in L-ACO. 

Moreover, in order to guide the search towards a near-optimal 

solution meeting the deadline, the deadline constraint is relaxed 

and this relaxation is gradually diminished until is removed 

completely. 

 
Keywords: Ant colony optimization, Deadline, Cloud 

Computing, Workflows, Workflow Scheduling. 

1. Introduction 

Cloud computing is one of the popular and latest leading 

technology. Cloud computing is a large scale distributed 

computing paradigm in which a pool of abstracted, virtualized, 

dynamically scalable and services are delivered on demand to 

external customers over the internet. Here cloud consists of set 

virtual machine which include both computational and storage 

facility. Cloud computing provides three important services. 

They are infrastructure as a service, platform as a service and 

software as a service. These services are available in pay per 

use on demand model. Scheduling is one of the most famous 

activity in cloud computing environment to increase the 

efficiency of work and performance of task. Task scheduling is 

valuable concept which is greatly affects the behavior of the 

performance of tasks. Workflow application can be useful in 

many areas such as astronomy, bioinformatics, and physics, for 

the development of Scientific Application. These workflows 

contain hundred or thousand number of tasks which can be 

represented by Directed Acyclic Graph, in which node 

represents the Task and edge represents the relationship 

between tasks. Cloud computing has public model in which 

resources can be hire by paying charge for it, called as pay-per-

use system. In this model resources are dynamically scalable  

 

according to the need of application. So, the resources for  

executing the workflow can be provisioned on demand and also 

its number can be increased until it contains enough budgets to 

support it [1]. Cloud computing provides Infrastructure as a 

Service model, in which user obtains the virtual machines as 

resource and deploy their workflow applications on it. Cloud 

makes this a suitable platform to execute deadline-constrained 

scientific workflows. One of the constraints for workflow 

execution is the budget allotted for it, which becomes limitation 

for hiring the number of resources. This is because the cloud 

providers apply charges for resource utilization for time 

interval. Our work aims at scheduling the workflow, such that 

the execution is completed before the deadline and within the 

budget constraint. 

2. Related work 

To schedule the scientific workflows in Software as a Service 

Cloud S. Abrishami et al proposed a new algorithm based on 

the partial critical path in 2012. This algorithm tries to minimize 

the workflow execution cost by meeting its deadline. This 

algorithm first schedules the critical path of the workflow and 

then finds the partial critical path to each task on critical path 

[5]. In 2013, Salid Abrishami, Mahmoud Naghibzadeh and 

Dick H. J. E pema proposed Deadline-Constrained Workflow 

Scheduling Algorithm for Infrastructure Service. In this paper, 

execution time is minimized by maintaining the user defined 

deadline. The author implements two different algorithms 

based on PCP. First is Cloud Partial Critical Path and second 

with Deadline Distribution [3]. The disadvantage of this 

algorithm is that they didn’t consider the data transfer time 

during provisioning and scheduling. 

The author Rajkumar buyya et al proposed a combine 

resource provisioning and scheduling for scientific workflow 

execution. They used Meta heuristic optimization algorithm, 

Particle Swarm Optimization to minimize the execution cost. 

This algorithm performs better for smaller sized workflow [4].  

Wu et al. propose a heuristic algorithm called PCP-B2 [7] and 

the budget distribution is implemented via a binary search 

method. Another idea for this problem is to first construct a 

schedule that has good performance on one considered 

objective, and then keep swapping tasks between resources to 

improve as much as possible for the other objective. The LOSS 

approach starts with a schedule with relatively short execution 
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time, and repeats reassigning tasks to cheaper resources until 

the overall cost is lower than the given budget. 

Sakellariou, R., Zhao proposed a basic model for workflow 

applications that modeled as directed acyclic graph (DAGs) and 

that allow to schedule the nodes of DAG onto resources in a 

way that satisfies a budget constraint and is optimized for 

overall time. Thus, the aim is to find the schedule that gives the 

shortest makespan for a given DAG and a given set of resources 

without exceeding the budget available [7]. In order to reduce 

the limitations of previous algorithms, proposed algorithm uses 

probabilistic upward rank mechanism and pheromone trail such 

that the tasks are complete its execution before deadline. 

3. System model 

A workflow application can be represented by a directed 

acyclic graph , DAG = (V, E), where, V is a set of n tasks {t1, 

t2,…tn}, and E is a set of precedence dependencies. Each task 

represents an indivisible individual application with a certain 

amount of computation workload wi. A precedence dependency 

ei,j=(ti, tj) indicates that task tj can start executing only after 

task ti finishes. Furthermore, if there is data transmission data 

i,j attached onto ei,j, then tj can start only after the data from ti 

has been received. The source and the destination of a 

dependency ei,j is called the parent task and the child task, 

respectively. To generalize the workflow with one entry and 

one exit, two dummy tasks tentry and texit with zero execution 

time are added to the beginning and the end of the workflow, 

respectively [1]. 

 

When task ti is allocated to service sl, the execution time can be 

calculated via: 

        ETi ,l = wi / p(sl) 

 

Moreover, if sl is leased by the user from LSTl (lease start time) 

to LFTl (lease finish time), the required cost can be calculated 

via: 

        ECl = (LFTl – LSTl) /TI×c (sl) 

 

The data transfer time of a dependency ei,j, TTi,j, depends on the 

amount of data to be transferred and when both tasks ti and tj 

are executed on the same service, TTi,j becomes zero. Since 

assumption is that all services of the provider are in the same 

physical region, so the average bandwidth (bw) between the 

computation services is roughly equal and the internal data 

transfer is free [1]. 

 

TTi,j= Data i,j/ bw if ser(ti)!=ser(tj)  and 

TTi,j= 0                 otherwise. 

A. System architecture 

Fig. 1 represents the system architecture of the system. The 

user will submit the workflow, which has to be executed in the 

cloud. User has to provide the XML file representing Directed 

Acyclic Graph (DAG) structure of workflow. The DAX [9] 

files contains list of tasks, dependencies between tasks, their 

computation time and size of the input and output files 

generated by the tasks. It also contains information about task 

as task id, its runtime and name of the task. This uses a 

metaheuristic algorithm L-ACO as well as a simple heuristic 

ProLiS. ProLiS distributes the deadline to each task, 

proportionally to a novel definition of probabilistic upward 

rank, and follows a two-step list scheduling methodology: rank 

tasks and sequentially allocates each task a service which meets 

the sub-deadline and minimizes the cost. 

 

 
Fig. 1.  System architecture  

B. Probabilistic list scheduling algorithm 

It is simple heuristic algorithm. It consists of following three 

steps:  

1) Deadline distribution 

This is based on probabilistic upward rank mechanism which 

is calculated via: 

 

 pri = MAX { prj + yj * Datai,j/ bw } tjЄ ti’s children + wi / p(s*) 

 

Here, γj is a Boolean variable denoting whether transmission 

time to tj is considered in the calculation of pri. Specifically, 

following equation can be obtained [1]. 

 

   yj = 0  if  1 − θccrj < rand() 

   yj = 0  otherwise. 

 

Here, ccrj is the computation to communication ratio of tj, rand() 

is a function returning a random number in [0, 1), and θ is a 

parameter larger than 1. Therefore, the less ccrj is, the larger the 

probability that γj returns 0 is, and vice versa. 

Deadline distribution based on probabilistic upward rank is 

implemented via following equation, where pri is used instead 

of ri. 

 psdi = D *{ prentry - pri + wi/p(s*)}/ prentry 

 

2) Task ordering 

This is also based on probabilistic upward rank mechanism 

since it is aware of the fact that data transmission time can be 

zero in contrast to its previous work like upward rank, static 

level. 

3) Service selection 

The first criterion for service selection is to select a service 

which meets its sub-deadline and minimizes the cost increment 

of adding ti . This increment is not directly calculated as the cost 

of running ti on sl, but is calculated as the execution cost of sl 

after adding ti minus that before adding ti [1]. 
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However, in the case when no service can meet the sub 

deadline, the criterion to select a service from R is instead to 

minimize the finish time of the task. But in case, if the 

selected service is not of the fastest type, then it is tried to set 

its type to a faster level and update the finish time of each 

task deployed on it. Because of this the probability for the 

solution to meet the overall deadline is increased. 

4) L-ACO algorithm 

Ant Colony Optimization (ACO) is based on the capability of 

real ants to find the shortest path between their nest and a food 

source. It is metaheuristic algorithm. It uses the ACO 

metaheuristic to modify the task ordering step in ProLiS to 

solve the workflow scheduling problem [1]. It has also three 

steps as deadline distribution, task ordering and service 

selection. It uses same methods as used in ProLis for deadline 

distribution and service selection. But in case of task ordering 

it uses probabilistic upward rank as well as pheromone trail 

mechanism where pheromone trail τi,j is defined as the 

desirability of selecting task tj just after task ti. τi,j is initialized 

to a uniform value and then continuously updated in the loop of 

ACO algorithm. 

In L-ACO an ant colony with a size of colSize is created and 

the pheromone trail is initialized. Then, each ant builds a 

solution for the problem, the local best solution is stored to 

lbSol by comparing all the built solutions, and afterwards the 

pheromone trail is updated. The same procedure is repeated 

until the iteration number k increases to maxNo and finally the 

global best solution is returned as output. There must be 

guarantee that the solution obtained through the service 

selection step does not violate precedence constraints between 

tasks, the ordered task list should be a topological ordering of 

the workflow graph. Specifically, a topological sort of a DAG 

is a linear ordering of all its vertices such that if DAG contains 

an edge (u, v), then u appears before v in the ordering. To 

preserve the precedence dependencies, ant must undergo the 

Kahn’s algorithm to generate a task ordering based on the 

pheromone trail and heuristic information. Here there is use of 

an improved independent optimization method to handle 

constraint optimization problem where deadline is relaxed 

initially in some iterations and after that it no longer relaxed. 

The deadline constraint D at the kth iteration of L-ACO is 

relaxed to Dε(k) and ε comparison > ε between two solutions 

(f1, φ1) and (f2, φ2) is introduced to compare solutions [6]. 

 

 Dε(k) = D + MAX{0, Mbase – D} * (1-k/kT)cp    if 0<=k< kT 

 Dε(k) = D                                                if k> kT 

  (f1, φ1) > ε (f2, φ2) = f1 < f2 if φ1, φ2 < Dε (k)  

  (f1, φ1) > ε (f2, φ2) = f1 < f2 if φ1 = φ2  

  (f1, φ1) > ε (f2, φ2) = φ1 < φ2 Otherwise   

 

Here Mbase is the makespan value when allocating all tasks to 

the slowest service, k is the current iteration number of L-ACO, 

kT is the iteration number where relaxation is terminated, and 

cp is the parameter to control the curve of Dε(k). The relaxed 

deadline Dε(k) decreases gradually with the increase of k until 

reaching kT. After that, the deadline is no longer relaxed in order 

to obtain solutions with no constraint violation. 

Finally, updation of pheromone trail is done by using MAX-

MIN Ant System (MMAS) mechanism where the pheromone 

values on pheromone trails are bound between an upper and 

lower limit (τmin and τmax) in order to avoid search stagnation 

and enhance exploration. At the beginning of L-ACO, 

pheromones of all edges are initialized to τmax. In each iteration, 

the ant which builds the best solution, i.e., which ranks highest 

via ε comparison, deposits a certain amount of pheromone on 

each visited edge [11]. 

Meanwhile, a percentage of existing pheromones in all edges 

evaporate. Thus, at the end of the kth iteration of the algorithm, 

the pheromone is updated according to the following formula: 

 

    Гi,j (k +1) = (1- ρ) * Гi,j(k) + ∆ Гi,j(k) 

 

Where, ρ is the pheromone evaporation coefficient, and Δτi,j(k) 

is the amount of pheromone deposited by the ant that builds the 

best solution (denoted as sbest(k)), defined as: 

 

 Гi,j(k) = 1/ fbest
(k) if ei,j € sbest(k) 

 Гi,j(k) = 0                Otherwise[1]. 

4. Simulation of cloudsim 

CloudSim [8] is a new open source toolkit developed using 

java that generalized, and advanced simulation framework 

allows simulation of Cloud computing and application services. 

CloudSim is a simulation tool for creating cloud computing 

environment and used as the simulator in solving the workflow 

scheduling problem. CloudSim allows us to create a data center 

with a set of hosts and number of virtual machines as resources. 

Each task of a workflow can be assigned to appropriate virtual 

machine once it’s all parent tasks get executed. 

A. Simulation description 

The result analysis was conducted on Dell PC with 2.0 GHz 

Intel i5 CPU and 4 GB of memory running windows 7 and 

CloudSim. Cloudsim is used to construct nine virtual machines 

in single data center. The XML files of four workflows are 

given as Input to algorithm. These workflows contain the 

number of tasks, and these tasks are provided for scheduling. It 

uses single datacenter and following nine types of virtual 

machines as shown in table 1. The simulation result shows that, 

the algorithm improves the performance of cloud system. Λ is 

set to small values to have tight deadlines. To evaluate the 

ability of each approach to obtain a valid solution that meets 

Table 1 

Virtual Machine Types 

Type Speed Cost 

0 1.0 0.12 

1 1.5 0.195 

2 2.0 0.28 

3 2.5 0.375 

4 3.0 0.48 

5 3.5 0.595 

6 4.0 0.72 

7 4.5 0.855 

8 5.0 1.0 
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deadline constraints, λ is varied from 0.005 to 0.05 with a step 

of 0.005. Below tables show average success ratio of each 

approach to obtain a valid solution under different conditions. 

Λ is also set to larger values so that to have more proper 

comparison of all four algorithms. The main observation is that 

the required normalized cost decreases with rising λ. But this 

varies from workflow to workflow. The performance of PSO 

[Particle Swarm Optimization] is specific to the workflow 

application and the value of λ.  For example, PSO fails to obtain 

100% success ratio when deadline is too tight that is its success 

ratio is 0.9 when λ is 0.005 in case of cybershake. In case of 

Ligo, when λ is 0.005 its success ratio is 0.In case of montage, 

success ratio is 0 when λ is 0.005 and 0.01.And ICPCP, LACO, 

ProLis obtains 100% success ratio when λ € [0.005, 0.05]. Also 

when λ is very small, not all approaches can obtain valid 

solutions and it is meaningless to compare normalized costs 

when the deadline is not met. Hence, with λ varying from 0.005 

to 0.05, Tables 11-14 shows normalized cost of each approach 

only when the corresponding success ratio is 100%. In most 

cases ProLiS outperforms PSO and ICPCP, though it may not 

obtain valid solutions when the deadline is very tight. L-ACO 

performs the best of all and it achieves a success ratio of 100% 

for all λ and all workflows.  

Fig. 2 to Fig. 5 shows line charts of success ratio versus 

deadline vector with deadline factor varying from 0.005 to 0.05 

run on Cybershake, Ligo, montage, genome of size of 500.And 

also 20 instances of each size is used. 

Fig. 6 to Fig. 9 shows line charts of normalized cost versus 

deadline vector with deadline factor varying from 0.005 to 0.05 

run on Cybershake, Ligo, montage, genome of size of 500.And 

also 20 instances of each size is used. It shows that normalized 

cost of LACO is least among all four approaches. This shows 

that it performs best among all four algorithms. The required 

normalized cost decreases with rising λ. 

 

 
Fig. 2.  Cybershake  

 

 
Fig. 3.  Ligo  

 
Fig. 4.  Montage 

 

 
Fig. 5.  Genome 

 

 
Fig. 6.  Cybershake 

 

 
Fig. 7. Ligo 

 

 
Fig. 8.  Montage 
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Fig. 9.  Genome 

 

It has also been proved that if iteration number increases 

there is no change in success ratio. Cost of LACO decreases. 

Cost of all other algorithms changes irregularly, approximately 

increase and decrease alternatively. If iteration increases further 

from 50 to 55 cost of LACO decreases and cost of all other 

algorithms decreases irregularly. It has been proved that When 

bandwidth is increased, data transfer time decreased and hence 

execution time decreases that’s why cost of PSO, ProLiS, 

LACO decreases but in case of ICPCP cost decreases when 

deadline factor is in range [0.03,0.5]. Success ratio of PSO 

improved. 

B. Benchmarks 

Also there are two benchmarks which are used to calculate 

deadline of workflow D. 

 Cheap Schedule - In this benchmark, only one instance 

of the cheapest service is used, and the workflow is 

scheduled by the simple and effective greedy 

algorithm HEFT [2]. Its makes pan and required 

execution cost are denoted as MC and CC, respectively; 

 Fast Schedule - In this benchmark, only the fastest 

type of services is used and the workflow is scheduled 

by HEFT [2] as well. Its makes pan and required 

execution cost are denoted as MF and CF, respectively. 

Also there is introduction of the deadline factor λ (λ ∈ [0, 1]) 

to represent the looseness degree of deadlines and the deadline 

of a workflow is determined based on λ as shown in:  

 

D = MF + (MC − MF) ×λ. 

5. Conclusion 

Metaheuristic algorithm L-ACO and a simple heuristic 

ProLiS aims to minimize the execution cost of workflow 

application under a user-defined deadline constraint. The 

success rate of L-ACO is the highest and it obtains the solutions 

meeting required constraints achieving lower cost. The 

performance of the simple heuristic ProLiS is very competitive. 

Further it is also proved that normalized cost can be decreased 

and success ratio can be improved by can be improved by 

increasing number of iterations and bandwidth. 
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