
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

302

Abstract: Recently, executing workflow applications is become

common in the cloud because this causes workflow application to

use resources on demand. This is also advantage over traditional

workflow scheduling algorithms that only aims on optimizing the

execution time. It includes method to minimize execution cost of a

workflow in clouds under a deadline constraint and uses a

metaheuristic algorithm L-ACO and a simple heuristic ProLiS.

ProLiS distributes the deadline to each task using upward rank

mechanism, and uses a two-step list scheduling methodology: rank

tasks and sequentially allocates each task a service which meets the

sub-deadline and minimizes the cost. L-ACO uses ant colony

optimization for performing deadline-constrained cost

optimization and uses the same deadline distribution and service

selection methods as ProLiS to build solutions The MMAS

framework is utilized for the pheromone updating in L-ACO.

Moreover, in order to guide the search towards a near-optimal

solution meeting the deadline, the deadline constraint is relaxed

and this relaxation is gradually diminished until is removed

completely.

Keywords: Ant colony optimization, Deadline, Cloud

Computing, Workflows, Workflow Scheduling.

1. Introduction

Cloud computing is one of the popular and latest leading

technology. Cloud computing is a large scale distributed

computing paradigm in which a pool of abstracted, virtualized,

dynamically scalable and services are delivered on demand to

external customers over the internet. Here cloud consists of set

virtual machine which include both computational and storage

facility. Cloud computing provides three important services.

They are infrastructure as a service, platform as a service and

software as a service. These services are available in pay per

use on demand model. Scheduling is one of the most famous

activity in cloud computing environment to increase the

efficiency of work and performance of task. Task scheduling is

valuable concept which is greatly affects the behavior of the

performance of tasks. Workflow application can be useful in

many areas such as astronomy, bioinformatics, and physics, for

the development of Scientific Application. These workflows

contain hundred or thousand number of tasks which can be

represented by Directed Acyclic Graph, in which node

represents the Task and edge represents the relationship

between tasks. Cloud computing has public model in which

resources can be hire by paying charge for it, called as pay-per-

use system. In this model resources are dynamically scalable

according to the need of application. So, the resources for

executing the workflow can be provisioned on demand and also

its number can be increased until it contains enough budgets to

support it [1]. Cloud computing provides Infrastructure as a

Service model, in which user obtains the virtual machines as

resource and deploy their workflow applications on it. Cloud

makes this a suitable platform to execute deadline-constrained

scientific workflows. One of the constraints for workflow

execution is the budget allotted for it, which becomes limitation

for hiring the number of resources. This is because the cloud

providers apply charges for resource utilization for time

interval. Our work aims at scheduling the workflow, such that

the execution is completed before the deadline and within the

budget constraint.

2. Related work

To schedule the scientific workflows in Software as a Service

Cloud S. Abrishami et al proposed a new algorithm based on

the partial critical path in 2012. This algorithm tries to minimize

the workflow execution cost by meeting its deadline. This

algorithm first schedules the critical path of the workflow and

then finds the partial critical path to each task on critical path

[5]. In 2013, Salid Abrishami, Mahmoud Naghibzadeh and

Dick H. J. E pema proposed Deadline-Constrained Workflow

Scheduling Algorithm for Infrastructure Service. In this paper,

execution time is minimized by maintaining the user defined

deadline. The author implements two different algorithms

based on PCP. First is Cloud Partial Critical Path and second

with Deadline Distribution [3]. The disadvantage of this

algorithm is that they didn’t consider the data transfer time

during provisioning and scheduling.

The author Rajkumar buyya et al proposed a combine

resource provisioning and scheduling for scientific workflow

execution. They used Meta heuristic optimization algorithm,

Particle Swarm Optimization to minimize the execution cost.

This algorithm performs better for smaller sized workflow [4].

Wu et al. propose a heuristic algorithm called PCP-B2 [7] and

the budget distribution is implemented via a binary search

method. Another idea for this problem is to first construct a

schedule that has good performance on one considered

objective, and then keep swapping tasks between resources to

improve as much as possible for the other objective. The LOSS

approach starts with a schedule with relatively short execution

Cloud Workflow Scheduling Using Deadline

based Cost Efficient Approach

Snehal Nemichandji Kankariya

PG Student, Department of Computer Engineering, SSVPS B. S. Deore College of Engineering, Dhule, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

303

time, and repeats reassigning tasks to cheaper resources until

the overall cost is lower than the given budget.

Sakellariou, R., Zhao proposed a basic model for workflow

applications that modeled as directed acyclic graph (DAGs) and

that allow to schedule the nodes of DAG onto resources in a

way that satisfies a budget constraint and is optimized for

overall time. Thus, the aim is to find the schedule that gives the

shortest makespan for a given DAG and a given set of resources

without exceeding the budget available [7]. In order to reduce

the limitations of previous algorithms, proposed algorithm uses

probabilistic upward rank mechanism and pheromone trail such

that the tasks are complete its execution before deadline.

3. System model

A workflow application can be represented by a directed

acyclic graph , DAG = (V, E), where, V is a set of n tasks {t1,

t2,…tn}, and E is a set of precedence dependencies. Each task

represents an indivisible individual application with a certain

amount of computation workload wi. A precedence dependency

ei,j=(ti, tj) indicates that task tj can start executing only after

task ti finishes. Furthermore, if there is data transmission data

i,j attached onto ei,j, then tj can start only after the data from ti

has been received. The source and the destination of a

dependency ei,j is called the parent task and the child task,

respectively. To generalize the workflow with one entry and

one exit, two dummy tasks tentry and texit with zero execution

time are added to the beginning and the end of the workflow,

respectively [1].

When task ti is allocated to service sl, the execution time can be

calculated via:

 ETi ,l = wi / p(sl)

Moreover, if sl is leased by the user from LSTl (lease start time)

to LFTl (lease finish time), the required cost can be calculated

via:

 ECl = (LFTl – LSTl) /TI×c (sl)

The data transfer time of a dependency ei,j, TTi,j, depends on the

amount of data to be transferred and when both tasks ti and tj

are executed on the same service, TTi,j becomes zero. Since

assumption is that all services of the provider are in the same

physical region, so the average bandwidth (bw) between the

computation services is roughly equal and the internal data

transfer is free [1].

TTi,j= Data i,j/ bw if ser(ti)!=ser(tj) and

TTi,j= 0 otherwise.

A. System architecture

Fig. 1 represents the system architecture of the system. The

user will submit the workflow, which has to be executed in the

cloud. User has to provide the XML file representing Directed

Acyclic Graph (DAG) structure of workflow. The DAX [9]

files contains list of tasks, dependencies between tasks, their

computation time and size of the input and output files

generated by the tasks. It also contains information about task

as task id, its runtime and name of the task. This uses a

metaheuristic algorithm L-ACO as well as a simple heuristic

ProLiS. ProLiS distributes the deadline to each task,

proportionally to a novel definition of probabilistic upward

rank, and follows a two-step list scheduling methodology: rank

tasks and sequentially allocates each task a service which meets

the sub-deadline and minimizes the cost.

Fig. 1. System architecture

B. Probabilistic list scheduling algorithm

It is simple heuristic algorithm. It consists of following three

steps:

1) Deadline distribution

This is based on probabilistic upward rank mechanism which

is calculated via:

 pri = MAX { prj + yj * Datai,j/ bw } tjЄ ti’s children + wi / p(s*)

Here, γj is a Boolean variable denoting whether transmission

time to tj is considered in the calculation of pri. Specifically,

following equation can be obtained [1].

 yj = 0 if 1 − θccrj < rand()

 yj = 0 otherwise.

Here, ccrj is the computation to communication ratio of tj, rand()

is a function returning a random number in [0, 1), and θ is a

parameter larger than 1. Therefore, the less ccrj is, the larger the

probability that γj returns 0 is, and vice versa.

Deadline distribution based on probabilistic upward rank is

implemented via following equation, where pri is used instead

of ri.

 psdi = D *{ prentry - pri + wi/p(s*)}/ prentry

2) Task ordering

This is also based on probabilistic upward rank mechanism

since it is aware of the fact that data transmission time can be

zero in contrast to its previous work like upward rank, static

level.

3) Service selection

The first criterion for service selection is to select a service

which meets its sub-deadline and minimizes the cost increment

of adding ti . This increment is not directly calculated as the cost

of running ti on sl, but is calculated as the execution cost of sl

after adding ti minus that before adding ti [1].

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

304

However, in the case when no service can meet the sub

deadline, the criterion to select a service from R is instead to

minimize the finish time of the task. But in case, if the

selected service is not of the fastest type, then it is tried to set

its type to a faster level and update the finish time of each

task deployed on it. Because of this the probability for the

solution to meet the overall deadline is increased.

4) L-ACO algorithm

Ant Colony Optimization (ACO) is based on the capability of

real ants to find the shortest path between their nest and a food

source. It is metaheuristic algorithm. It uses the ACO

metaheuristic to modify the task ordering step in ProLiS to

solve the workflow scheduling problem [1]. It has also three

steps as deadline distribution, task ordering and service

selection. It uses same methods as used in ProLis for deadline

distribution and service selection. But in case of task ordering

it uses probabilistic upward rank as well as pheromone trail

mechanism where pheromone trail τi,j is defined as the

desirability of selecting task tj just after task ti. τi,j is initialized

to a uniform value and then continuously updated in the loop of

ACO algorithm.

In L-ACO an ant colony with a size of colSize is created and

the pheromone trail is initialized. Then, each ant builds a

solution for the problem, the local best solution is stored to

lbSol by comparing all the built solutions, and afterwards the

pheromone trail is updated. The same procedure is repeated

until the iteration number k increases to maxNo and finally the

global best solution is returned as output. There must be

guarantee that the solution obtained through the service

selection step does not violate precedence constraints between

tasks, the ordered task list should be a topological ordering of

the workflow graph. Specifically, a topological sort of a DAG

is a linear ordering of all its vertices such that if DAG contains

an edge (u, v), then u appears before v in the ordering. To

preserve the precedence dependencies, ant must undergo the

Kahn’s algorithm to generate a task ordering based on the

pheromone trail and heuristic information. Here there is use of

an improved independent optimization method to handle

constraint optimization problem where deadline is relaxed

initially in some iterations and after that it no longer relaxed.

The deadline constraint D at the kth iteration of L-ACO is

relaxed to Dε(k) and ε comparison > ε between two solutions

(f1, φ1) and (f2, φ2) is introduced to compare solutions [6].

 Dε(k) = D + MAX{0, Mbase – D} * (1-k/kT)cp if 0<=k< kT

 Dε(k) = D if k> kT

 (f1, φ1) > ε (f2, φ2) = f1 < f2 if φ1, φ2 < Dε (k)

 (f1, φ1) > ε (f2, φ2) = f1 < f2 if φ1 = φ2

 (f1, φ1) > ε (f2, φ2) = φ1 < φ2 Otherwise

Here Mbase is the makespan value when allocating all tasks to

the slowest service, k is the current iteration number of L-ACO,

kT is the iteration number where relaxation is terminated, and

cp is the parameter to control the curve of Dε(k). The relaxed

deadline Dε(k) decreases gradually with the increase of k until

reaching kT. After that, the deadline is no longer relaxed in order

to obtain solutions with no constraint violation.

Finally, updation of pheromone trail is done by using MAX-

MIN Ant System (MMAS) mechanism where the pheromone

values on pheromone trails are bound between an upper and

lower limit (τmin and τmax) in order to avoid search stagnation

and enhance exploration. At the beginning of L-ACO,

pheromones of all edges are initialized to τmax. In each iteration,

the ant which builds the best solution, i.e., which ranks highest

via ε comparison, deposits a certain amount of pheromone on

each visited edge [11].

Meanwhile, a percentage of existing pheromones in all edges

evaporate. Thus, at the end of the kth iteration of the algorithm,

the pheromone is updated according to the following formula:

 Гi,j (k +1) = (1- ρ) * Гi,j(k) + ∆ Гi,j(k)

Where, ρ is the pheromone evaporation coefficient, and Δτi,j(k)

is the amount of pheromone deposited by the ant that builds the

best solution (denoted as sbest(k)), defined as:

 Гi,j(k) = 1/ fbest
(k) if ei,j € sbest(k)

 Гi,j(k) = 0 Otherwise[1].

4. Simulation of cloudsim

CloudSim [8] is a new open source toolkit developed using

java that generalized, and advanced simulation framework

allows simulation of Cloud computing and application services.

CloudSim is a simulation tool for creating cloud computing

environment and used as the simulator in solving the workflow

scheduling problem. CloudSim allows us to create a data center

with a set of hosts and number of virtual machines as resources.

Each task of a workflow can be assigned to appropriate virtual

machine once it’s all parent tasks get executed.

A. Simulation description

The result analysis was conducted on Dell PC with 2.0 GHz

Intel i5 CPU and 4 GB of memory running windows 7 and

CloudSim. Cloudsim is used to construct nine virtual machines

in single data center. The XML files of four workflows are

given as Input to algorithm. These workflows contain the

number of tasks, and these tasks are provided for scheduling. It

uses single datacenter and following nine types of virtual

machines as shown in table 1. The simulation result shows that,

the algorithm improves the performance of cloud system. Λ is

set to small values to have tight deadlines. To evaluate the

ability of each approach to obtain a valid solution that meets

Table 1

Virtual Machine Types

Type Speed Cost

0 1.0 0.12

1 1.5 0.195

2 2.0 0.28

3 2.5 0.375

4 3.0 0.48

5 3.5 0.595

6 4.0 0.72

7 4.5 0.855

8 5.0 1.0

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

305

deadline constraints, λ is varied from 0.005 to 0.05 with a step

of 0.005. Below tables show average success ratio of each

approach to obtain a valid solution under different conditions.

Λ is also set to larger values so that to have more proper

comparison of all four algorithms. The main observation is that

the required normalized cost decreases with rising λ. But this

varies from workflow to workflow. The performance of PSO

[Particle Swarm Optimization] is specific to the workflow

application and the value of λ. For example, PSO fails to obtain

100% success ratio when deadline is too tight that is its success

ratio is 0.9 when λ is 0.005 in case of cybershake. In case of

Ligo, when λ is 0.005 its success ratio is 0.In case of montage,

success ratio is 0 when λ is 0.005 and 0.01.And ICPCP, LACO,

ProLis obtains 100% success ratio when λ € [0.005, 0.05]. Also

when λ is very small, not all approaches can obtain valid

solutions and it is meaningless to compare normalized costs

when the deadline is not met. Hence, with λ varying from 0.005

to 0.05, Tables 11-14 shows normalized cost of each approach

only when the corresponding success ratio is 100%. In most

cases ProLiS outperforms PSO and ICPCP, though it may not

obtain valid solutions when the deadline is very tight. L-ACO

performs the best of all and it achieves a success ratio of 100%

for all λ and all workflows.

Fig. 2 to Fig. 5 shows line charts of success ratio versus

deadline vector with deadline factor varying from 0.005 to 0.05

run on Cybershake, Ligo, montage, genome of size of 500.And

also 20 instances of each size is used.

Fig. 6 to Fig. 9 shows line charts of normalized cost versus

deadline vector with deadline factor varying from 0.005 to 0.05

run on Cybershake, Ligo, montage, genome of size of 500.And

also 20 instances of each size is used. It shows that normalized

cost of LACO is least among all four approaches. This shows

that it performs best among all four algorithms. The required

normalized cost decreases with rising λ.

Fig. 2. Cybershake

Fig. 3. Ligo

Fig. 4. Montage

Fig. 5. Genome

Fig. 6. Cybershake

Fig. 7. Ligo

Fig. 8. Montage

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

306

Fig. 9. Genome

It has also been proved that if iteration number increases

there is no change in success ratio. Cost of LACO decreases.

Cost of all other algorithms changes irregularly, approximately

increase and decrease alternatively. If iteration increases further

from 50 to 55 cost of LACO decreases and cost of all other

algorithms decreases irregularly. It has been proved that When

bandwidth is increased, data transfer time decreased and hence

execution time decreases that’s why cost of PSO, ProLiS,

LACO decreases but in case of ICPCP cost decreases when

deadline factor is in range [0.03,0.5]. Success ratio of PSO

improved.

B. Benchmarks

Also there are two benchmarks which are used to calculate

deadline of workflow D.

 Cheap Schedule - In this benchmark, only one instance

of the cheapest service is used, and the workflow is

scheduled by the simple and effective greedy

algorithm HEFT [2]. Its makes pan and required

execution cost are denoted as MC and CC, respectively;

 Fast Schedule - In this benchmark, only the fastest

type of services is used and the workflow is scheduled

by HEFT [2] as well. Its makes pan and required

execution cost are denoted as MF and CF, respectively.

Also there is introduction of the deadline factor λ (λ ∈ [0, 1])

to represent the looseness degree of deadlines and the deadline

of a workflow is determined based on λ as shown in:

D = MF + (MC − MF) ×λ.

5. Conclusion

Metaheuristic algorithm L-ACO and a simple heuristic

ProLiS aims to minimize the execution cost of workflow

application under a user-defined deadline constraint. The

success rate of L-ACO is the highest and it obtains the solutions

meeting required constraints achieving lower cost. The

performance of the simple heuristic ProLiS is very competitive.

Further it is also proved that normalized cost can be decreased

and success ratio can be improved by can be improved by

increasing number of iterations and bandwidth.

References

[1] F. I. Quanwang Wu, "Deadline-constrained Cost Optimization

Approaches for Workflow Scheduling in Clouds," IEEE Transactions on

Parallel and Distributed Systems, vol. 2, no. 1, pp. 1-12, 3 august 2017.

[2] S. H. a. M.-y. Haluk Topcuoglu, "Performance-effective and low-

complexity task scheduling for heterogeneous computing," IEEE

Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260–

274., 2002., vol. 13, no. 3, pp. 260-274, 2002.

[3] M. N. a. D. H. E. S. Abrishami, "Deadline-constrained work- flow

scheduling algorithms for Infrastructure as a Service Clouds," Future

Genera- tion Computer Systems, vol. 29, no. 1, pp. 158-169, 2013.

[4] R. B. M. A. Rodriguez, "Deadline based resource provisioning and

scheduling algorithm for scientific workflows on clouds," IEEE

Transactions on Cloud.

[5] Mahmoud Naghibzadeh, Dick H.J. Epema Saeid Abrishami, "Cost-

Driven Scheduling of Grid Workflows Using Partial Critical Paths,"

IEEE, vol. 8, p. 23, August 2012.

[6] S. S. T. Takahama, "Constrained optimization by the ε constrained

differential evolution with an archive and gradient-based mutation," IEEE

Congress on Evolutionary Computation, pp. 1-9, 2010.

[7] R. Sakellariou et al., "Scheduling Workflows with Budget Constraints,"

Integrated Research in GRID Computing: Core GRID Integration

Workshop, pp. 189-202, Boston, MA: Springer US, 2007.

[8] CLOUDS. [Online]. http://www.cloudbus.org/cloudsim/

[9] The XML files that describe the workflow applications are available via

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.

[10] M. Malawski, "Cost- and Deadline-Constrained Provisioning for

Scientific Workflow Ensembles in IaaS Clouds," IEEE, vol. 1, no. 2, pp.

1-11, 2014.

[11] A. H. H. H. T. Stützle, "MAX–MIN Ant System," Future Generation

Computer Systems, vol. 16, no. 8, pp. 889-914, 2000.

