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Abstract: Software cost estimation is one of the most demanding 

tasks in software engineering. Software organizations    /have a 

huge necessitate for estimating software projects during the early 

stages of software development lifecycle in order to handle their 

resources such as money, manpower, etc. The software effort 

estimation model like Constructive Cost Model (COCOMO) is a 

mathematical algorithmic model that estimates efforts relying 

upon the accurate estimation of size or complexity. The precision 

of algorithmic models for software cost prediction is limited due to 

their inability to maintain imprecision and uncertainties related 

with the software project attributes like size, programmer 

experience, etc. This work improves the accuracy and sensitivity 

of one of a broadly used model COCOMO-II by incorporating a 

neuro-fuzzy component into the model. Neuro-Fuzzy models are 

the combination of Artificial Neural Network and Fuzzy Logic. 

Artificial Neural Network has the capability to learn from 

previous data. It model difficult relationships between both 

independent variables and dependent variables. Our proposed 

work is compared with neural network approach and fuzzy logic 

approach based on the value of MMRE and PRED. We used 

MATLAB to assess these neural, fuzzy logic and neuro-fuzzy 

systems. 
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1. Introduction 

Software cost estimation has gained great importance in the 

last two decades due to its essential necessity for efficient effort 

estimation in software analysis. Software cost estimation refers 

to the estimation of the human effort and time required to 

develop a software artifact. The accurate estimation of the 

development effort and cost of a software system is one of the 

significant and challenging tasks for software project 

management. It is very useful in contract negotiations, project 

scheduling and capable allocation of resources. Yet, estimates 

at the preliminary stages of the project are the most intricate to 

obtain because the primary source to estimate the cost comes 

from the requirement specification documents .Enhancing the 

estimation techniques that are currently obtainable to project 

managers would facilitate improved control of time and money 

in software development. Furthermore, any improvement in the 

accuracy of estimating the development effort can significantly 

minimize the costs from errors, such as estimating incorrectly, 

ambiguous tendering bids, and disabling the monitoring 

progress [1], [2]. In the past decades, some significant software  

 

estimation algorithmic models have been published by 

researchers, as Constructive Cost Model (COCOMO) (Boehm 

et al. 2000), and Function Points (Albrecht 1979; Jones 1998). 

Model-based techniques have numerous strengths, the most 

important of which are objectivity, repeatability, the occurrence 

of supporting sensitivity analysis, and the capability to calibrate 

to previous experience (Boehm 1981). On the other hand, these 

models also have some drawbacks. One of the drawbacks of 

algorithmic models is their lack of flexibility in adapting to new 

situation. The new development environment generally entails 

a unique situation, resulting in inaccurate inputs for evaluation 

by an algorithmic model. As a fast changing business, the 

software industry often faces the problem of instability and 

hence algorithmic models can be rapidly outdated. The outputs 

of algorithmic models are depends on the inputs of size and the 

ratings of factors or variables (Boehm 1981). Hence, erroneous 

inputs to such models, resulting from obsolete information, 

cause the evaluation to be inaccurate. Another disadvantage of 

algorithmic models is the strong collinearity among parameters 

and the difficult non-linear relationships between the outputs 

and the contributing factors. 

 In this work, we propose a novel neuro-fuzzy COCOMO-II 

model to estimate software development effort by combining 

neurouzzy technique with the accepted COCOMO-II model. 

When we join the neuro-fuzzy approach with the standard 

COCOMO models, we can take advantage of some attractive 

features of a neuro-fuzzy approach such as its 

learning/adaptation ability and good interpretability. 

Consequently, our model is potential of generalization, an 

essential criterion for successful applications of fuzzy logic and 

neural networks techniques. Another feature of our model is 

that it allows for continuous rating values as input, which 

discards the problem of similar projects with large different cost 

estimations. The Neuro-fuzzy technique permits the integration 

of numerical data and expert knowledge and can be a powerful 

tool when tackling significant problems in software 

engineering. 

2. Related work  

Neha Sharma et. al. (2013) proposed model to evaluate 

parameters for NASA software project dataset using a genetic 

algorithm (GA). The experimental result shows that the three 
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models (Organic model, Semi-detached model and Embedded 

model) takes a lot of time and performs inferior than proposed 

model [3]. 

Swarup Kumar et. al. (2011) proposed fuzzy software cost 

estimation model that handles vagueness obscurity and a 

comparison is made with other famous software cost estimation 

models. Fuzzy logic method is used to address the difficulty of 

obscurity and vagueness exists in software effort drivers to 

estimate software effort [4]. A.Ahmed et al. [5] have presented 

about the adaptive Fuzzy Logic framework for effort prediction 

as algorithmic effort prediction models are not very competent 

to cope with the uncertainty and ambiguity present in the 

software projects. As a result the training and adaptation 

algorithm used in the framework are capable to handle the 

imprecision, explain the prediction via rules, provides 

transparency in the prediction system, and could adapt to the 

new environment when new data is obtainable. This work 

includes the transparent FL-based framework which allows 

contribution from experts, and is set with training and 

adaptation algorithm for development effort prediction. This 

work demonstrates the capabilities of the framework via 

empirical validation carried out on artificial datasets and the 

COCOMO. 

Martin et al. [6] have investigated the contrast between Fuzzy 

Logic Models (FLM) and Linear Regression Model (LRM) 

because the engineers have the less capability which is being 

offered by personal training, therefore they cannot support their 

teams to generate reliable results. This work includes the 

evaluation criterion which is based on the magnitude of error 

relative to the estimate (MER) in addition to the mean of MER 

(MMER). In this work, small programs are being developed by 

programmers. Along with these programs, Fuzzy Logic Models 

were generated to calculate the effort. Confirmation and 

Validation of the models are done. The output thus generated 

by the Fuzzy Logic model and Linear Regression produce the 

similar predictive accuracy, so Fuzzy Logic Model can be used 

as a substitute to estimate effort. Iman Attarzadeh et. al. (2010) 

proposed a model for managing imprecision and uncertainty by 

using the fuzzy logic systems. The proposed fuzzy logic model 

shows well software effort estimate evaluation criteria as 

compared to the traditional COCOMO. The experimental 

results demonstrate that applying fuzzy logic technique to the 

software effort estimation is a possible approach to addressing 

the problem of uncertainty and vagueness [20]. Gharehchopogh 

(2011) did a case study for software cost estimation using 

Neural Network (NN) architecture for finding necessary effort 

of new software. The results indicate that the NN model 

provides the very best algorithmic method to predict and 

estimate software costs [7]. 

Wei Lin Du et al. [8] proposed an approach combining the 

neuro-fuzzy technique and the SEER-SEM effort evaluation 

algorithm. The continuous rating values and linguistic values 

are the inputs of the proposed model for avoiding the deviation 

in estimation among related projects. The performance of the 

proposed integrated method has been optimized by designing 

and calculated with the data published in the historical projects. 

The evaluated results specify that the estimation with the 

proposed fuzzy model containing analogy reasoning make 

better results in comparison with the existing techniques [9] that 

uses feature selection algorithm. Xishi Huang et al. [10] also 

developed neuro-fuzzy Constructive Cost Model (COCOMO) 

for software cost estimation which uses the attractive features 

of a neurofuzzy approach, like learning ability and good 

interpretability, in COCOMO model. Chen et al. [19] concluded 

that the COCOMO II model can be enhanced via WRAPPER 

feature subset selection method developed by the data mining 

community. Using data sets from the PROMISE storage area, 

they showed WRAPPER considerably and dramatically 

enhances COCOMO II’s predictive power. 

3. Neural network models 

Significant effort has been put into the research of increasing 

software estimation models using neural networks [11, 12, and 

13]. Neural networks are based on the principle of learning from 

example with no previous information being specified. Neural 

networks are characterized based on three entities such as 

neurons, interconnection structure and learning algorithms. 

Majority of the software models developed using neural 

networks utilize multilayer feed-forward networks. The 

improvement of such a neural network model starts with a 

suitable layout of neurons, or connections between network 

nodes. This involves defining the number of layers of neurons, 

the number of neurons within each layer, and the manner in 

which they are connected. The activation functions of the nodes 

and the specific training algorithm to be utilized must also be 

found out. Once the network has been built, the model must be 

trained by offering it with a set of historical project data input 

and the consequent known actual values for project effort. The 

model then iterates on its training algorithm, routinely adjusting 

the weights until the model weights converge. Once the 

working out is complete and the suitable weights for the 

network links are determined, new input can be offered to the 

neural network to estimate the consequent project effort. In 

general, large data sets are required to accurately train neural 

networks. 

4. Fuzzy logic models  

A fuzzy method is a mapping between linguistic terms, such 

as medium complexity and high cost that are attached to 

variables. Thus an input into a fuzzy method can be either 

numerical or linguistic with the same applying to the output. A 

classic fuzzy system is made up of three major components 

such as fuzzifier, fuzzy inference engine and defuzzifier. The 

fuzzifier transforms the input to linguistic terms using 

membership functions that signify how much a given numerical 

value of some variable fits the linguistic term being considered. 

The fuzzy inference engine performs the mapping among the 

input membership functions and the output membership 
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functions using fuzzy rules that can be get from expert 

knowledge of the relationships being modeled. The larger the 

input membership degree, the stronger the rule fires, thus the 

stronger the pull to the direction of output membership 

function. Since numerous different output membership 

functions can be contained in the corresponding rules triggered, 

a defuzzifier carries out the defuzzification process to merge the 

output into a single label or numerical value as needed. 

5. COCOMO framework 

COCOMO (Constructive Cost Model) is the finest known 

algorithmic cost model published by Barry Boehm in 1981. It 

was developed from the study of sixty three software projects. 

The COCOMO model is a hierarchy of software cost estimation 

models. 

A. Basic COCOMO Model  

Fundamental COCOMO computes software development 

effort as a function of program size. Program size is expressed 

in predicted thousands of source lines of code (SLOC). 

COCOMO [10] applies to three classes of software projects: In 

organic mode simple projects that engage small teams 

functioning in well-known and stable environments. In Semi-

detached mode projects that engage teams with an assortment 

of experience. It is in between organic mode and embedded 

mode. In embedded mode complex projects that are developed 

under rigid constraints with changing requirements. The basic 

COCOMO equations are, 

Effort Applied, E = a × (SLOC) b [man-months]  

Development Time, D = c × (Effort Applied) d [months]  

People required, [count]  

Where, SLOC is the identify number of delivered lines 

(expressed in thousands) of code for project, here the 

coefficients a, b, c and d are depends upon the three modes of 

improvement of projects.  

6. COCOMO II and neuro fuzzy logic framework 

A. COCOMO II model 

It is degeneration based software cost estimation model and 

thought to be the majority cited, best known and the most 

plausible of all conventional cost prediction models. 

COCOMO II consists of the following models [14]: 

B. Application composition model 

It assumes that systems are formed from reusable 

components, scripting or database programming. It involves 

prototyping efforts to solve potential high-risk issues such as 

user interfaces, software/system communication, performance, 

or technology maturity. It is used during the premature stages 

of development when prototype of user interface is obtainable. 

Software size estimates are based on application points / object 

points, and a simple size/productivity formula is utilized to 

estimate the effort required. 

C. Early design model 

To acquire rough estimates of a project's cost and duration 

prior to determined its whole architecture. It uses a small set of 

new cost drivers and new calculating equations. It utilizes 

Unadjusted Function Points (UFP) as the measure of size. 

D. Post architecture model 

 On one occasion the system architecture has been designed, 

a more precise estimate of the software size can be made.  It 

includes the actual development and maintenance of a software 

product. One could use function points or LOC as size estimates 

with this model. COCOMO II model describes various cost 

drivers that are used in the Post Architecture model. The cost 

drivers for COCOMO II are rated on a scale starting from Very 

Low to Extra High. 

E. Effort estimation 

In COCOMO II model effort is expressed as Person-Months 

(PM). A person month is the amount of time one person spends 

functioning on the software development project for one month. 

COCOMO II handles the number of person-hours per person-

month, as an adjustable factor with a nominal value of 152 

hours per Person-Month. This number excludes time usually 

devoted to vacations, holidays, and weekend time off. The 

number of person-months is diverse from the time it will take 

the project to finish. This is called the development schedule. 

The inputs to the model are the Size of software development, 

an exponent, E, a constant, A, and a number of values called 

effort multipliers (EM). The number of effort multipliers based 

on the model. 

F.  Requirement for effort estimation  

 It would provide increased control of time and overall 

cost profit in software development life cycle.  

 Software development effort estimates are the origin 

for project bidding and planning.  

 Generally software effort estimation has even been 

recognized as one of the three most demanding 

challenges in software application areas. In the 

development process, the cost and time estimates are 

helpful for the preliminary rough validation and 

monitoring of the project’s completion process. And 

in addition, these estimates may be helpful for project 

productivity assessment phases.  

G. Neuro fuzzy logic 

Neural networks and fuzzy logic combination is the general 

idea behind the neuro-fuzzy system. NFS is a fuzzy system 

collectively with neural networks to increase some 

characteristics like flexibility and adaptability [16], [17], [18]. 

This work uses the second approach. There are 3 main 

components in the intelligent model:  

H. Neuro-fuzzy inference system (NFIS)  

It manages the dependencies among cost drivers. The inputs 
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are the ratings of the cost drivers, and its output is the tuned 

ratings of cost drivers. 

I. Neuro-fuzzy subsystem (NFi) 

 The input is the adjusted rating of the ith cost driver and the 

output is the multiplier rate of the ith cost driver that is used for 

input of the COCOMO. There are 22 cost drivers in our model. 

Each cost driver represents one factor of the development 

effort, such as product difficulty, applications experience etc. 

To estimate the contribution, we use six qualitative rating 

levels. When defined in linguistic terms, the six rating levels are 

Very Low (VL), Low (L), Nominal (N), High (H), Very High 

(VH) and Extra High (XH). Each rating level of each cost driver 

relates to a quantitative value utilized in the COCOMO model. 

Sub-model NFi is used to convert this rating of a cost driver into 

a quantitative multiplier value and to calibrate these relations 

by industry project data. In this work, we define a fuzzy set for 

each linguistic term of every cost driver are, very low, low, 

nominal, high, very high, extra high. We permit the 

membership functions are triangular functions or other 

functions, and prefer the universe of discourse to be the interval 

[1, 6]. We use fuzzy numbers “about 1” to about 6” to represent 

linguistic terms very low, low, nominal, high, very high, extra 

high, respectively.  

 

 
 Fig. 1.  Proposed Architecture 

 

COCOMO II consists of size, cost drivers and scale factors 

input and effort as output which is measured in person months 

(PM).The issue with software effort estimation is that it mostly 

depends upon single values of size, scale factors and cost 

drivers. The size of the project is estimated depends upon 

previously completed projects that are somewhat related with 

the current project. Also cost drivers and scale factors required 

to have through assessment rather than assigning a fixed 

numeric value. In the proposed model COCOMO II’s input 

parameters are size, cost drivers and scale factors are taken into 

consideration. This novel framework has attractive attributes, 

chiefly the fact that it can be generalized to several different 

situations and can be used to produce more specific models. In 

actual fact, its generalization is one of the purposes of scheming 

this framework. Its implementation is not limited to any 

particular software estimation model. The algorithmic model in 

the framework can be one of the current popular algorithmic 

models such as COCOMO. When various algorithmic models 

are implemented into this framework, the inputs and the non-

rating values are dissimilar. 

  

 
Fig. 2.  Neuro-fuzzy model 

 

 
Fig. 3.  FIS Editor 

J. Performance evaluation 

Many criteria to assess and compare effort estimation models 

are proposed. One of these criteria is the magnitude of relative 

error (MRE) which is defined for a project as follows: 

 
 MRE is calculated for COCOMO II as well as for the 

proposed neuro-fuzzy approach. It is found that MRE obtained 

for the proposed model is quite less as compared to MRE 

obtained by COCOMO II. 

Another broadly used and more accurate measure is the pred 

(l) which is defined as follows:  

 
Where, N is the total number of projects and k is the number 

of projects whose MRE is less than or equal to l. 

7. Implementation and results 

 This research will apply Constructive Cost Model 

(COCOMO-II) using Mamdani Fuzzy Inference 

System (FIS).  
Table 1 

Comparison between existing model and proposed model 

Performance Using 

13GMFS 

Using 

11GMFS 

Fuzzy 

 

Coco

mo 

Fuzzy Cocomo-II Neuro-

Fuzzy 

Neuro-Fuzzy 

With Cocomo-II 

MMRE 26.90 30.38 33.21 37.92 41.98 46.25 49.38 

PRED 53 36 24 15 12 10 7 
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 The results were analyzed by the criterion – MMRE 

(Mean Magnitude of Relative Error).  

 Less MMRE means the result is more accurate. 

 

 
Fig. 4.  Target 

 

 
Fig. 5.  Error rate 

 

 
Fig. 6.  MMRE 

 

 
Fig. 7. PRED 

8. Conclusion 

A critical issue for project managers is the accurate and 

reliable estimates of the required software development effort, 

particularly in the early stages of the software development life 

cycle. Software effort drivers generally have properties of 

uncertainty and ambiguity when they are measured by human 

judgment. Cost drivers in algorithmic software cost estimation 

are frequently expressed through linguistic assessments and 

they generally represent high level concepts for which a single, 

exact measurement scale is not available. This motivates the use 

of neuro-fuzzy techniques to model evaluated inputs and their 

assessment procedures. To date, neuro-fuzzy logic modeling 

techniques have been shown to be the most effective 

approximation method to handle imprecise data. This work 

suggests a new approach for finding a software projects 

development effort. The major difference between our work 

and previous works is that neuro-fuzzy technique is used for 

software development effort estimation and then it’s validated 

with collected data. Benefits of neural network and fuzzy logic 

are combined and learning ability and good generalization are 

obtained. The major benefit of this model is its good 

interpretability by using the fuzzy rules and another great 

benefit of this research is that it can put together expert 

knowledge project data and the learning ability of neural 

network model into one common framework that may have a 

wide range of applicability in software estimation. The results 

showed that neuro-fuzzy system is much superior to the 

previous methods. 
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