
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

219

Abstract: Software cost estimation is one of the most demanding

tasks in software engineering. Software organizations /have a

huge necessitate for estimating software projects during the early

stages of software development lifecycle in order to handle their

resources such as money, manpower, etc. The software effort

estimation model like Constructive Cost Model (COCOMO) is a

mathematical algorithmic model that estimates efforts relying

upon the accurate estimation of size or complexity. The precision

of algorithmic models for software cost prediction is limited due to

their inability to maintain imprecision and uncertainties related

with the software project attributes like size, programmer

experience, etc. This work improves the accuracy and sensitivity

of one of a broadly used model COCOMO-II by incorporating a

neuro-fuzzy component into the model. Neuro-Fuzzy models are

the combination of Artificial Neural Network and Fuzzy Logic.

Artificial Neural Network has the capability to learn from

previous data. It model difficult relationships between both

independent variables and dependent variables. Our proposed

work is compared with neural network approach and fuzzy logic

approach based on the value of MMRE and PRED. We used

MATLAB to assess these neural, fuzzy logic and neuro-fuzzy

systems.

Keywords: Effort Estimation, Neuro-Fuzzy Logic, COCOMO-II

1. Introduction

Software cost estimation has gained great importance in the

last two decades due to its essential necessity for efficient effort

estimation in software analysis. Software cost estimation refers

to the estimation of the human effort and time required to

develop a software artifact. The accurate estimation of the

development effort and cost of a software system is one of the

significant and challenging tasks for software project

management. It is very useful in contract negotiations, project

scheduling and capable allocation of resources. Yet, estimates

at the preliminary stages of the project are the most intricate to

obtain because the primary source to estimate the cost comes

from the requirement specification documents .Enhancing the

estimation techniques that are currently obtainable to project

managers would facilitate improved control of time and money

in software development. Furthermore, any improvement in the

accuracy of estimating the development effort can significantly

minimize the costs from errors, such as estimating incorrectly,

ambiguous tendering bids, and disabling the monitoring

progress [1], [2]. In the past decades, some significant software

estimation algorithmic models have been published by

researchers, as Constructive Cost Model (COCOMO) (Boehm

et al. 2000), and Function Points (Albrecht 1979; Jones 1998).

Model-based techniques have numerous strengths, the most

important of which are objectivity, repeatability, the occurrence

of supporting sensitivity analysis, and the capability to calibrate

to previous experience (Boehm 1981). On the other hand, these

models also have some drawbacks. One of the drawbacks of

algorithmic models is their lack of flexibility in adapting to new

situation. The new development environment generally entails

a unique situation, resulting in inaccurate inputs for evaluation

by an algorithmic model. As a fast changing business, the

software industry often faces the problem of instability and

hence algorithmic models can be rapidly outdated. The outputs

of algorithmic models are depends on the inputs of size and the

ratings of factors or variables (Boehm 1981). Hence, erroneous

inputs to such models, resulting from obsolete information,

cause the evaluation to be inaccurate. Another disadvantage of

algorithmic models is the strong collinearity among parameters

and the difficult non-linear relationships between the outputs

and the contributing factors.

 In this work, we propose a novel neuro-fuzzy COCOMO-II

model to estimate software development effort by combining

neurouzzy technique with the accepted COCOMO-II model.

When we join the neuro-fuzzy approach with the standard

COCOMO models, we can take advantage of some attractive

features of a neuro-fuzzy approach such as its

learning/adaptation ability and good interpretability.

Consequently, our model is potential of generalization, an

essential criterion for successful applications of fuzzy logic and

neural networks techniques. Another feature of our model is

that it allows for continuous rating values as input, which

discards the problem of similar projects with large different cost

estimations. The Neuro-fuzzy technique permits the integration

of numerical data and expert knowledge and can be a powerful

tool when tackling significant problems in software

engineering.

2. Related work

Neha Sharma et. al. (2013) proposed model to evaluate

parameters for NASA software project dataset using a genetic

algorithm (GA). The experimental result shows that the three

Software Cost Estimation Using Neuro Fuzzy

Logic Framework

A. Mary Christina1, V. Banumathy2

1Lecturer, Department of Computer Engineering, Srinivasa Subbaraya Govt. Polytechnic college, Puthur, India
2Lecturer, Dept. of Computer Engineering, A. D. J. Dharmambal Polytechnic College, Nagapattinam, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

220

models (Organic model, Semi-detached model and Embedded

model) takes a lot of time and performs inferior than proposed

model [3].

Swarup Kumar et. al. (2011) proposed fuzzy software cost

estimation model that handles vagueness obscurity and a

comparison is made with other famous software cost estimation

models. Fuzzy logic method is used to address the difficulty of

obscurity and vagueness exists in software effort drivers to

estimate software effort [4]. A.Ahmed et al. [5] have presented

about the adaptive Fuzzy Logic framework for effort prediction

as algorithmic effort prediction models are not very competent

to cope with the uncertainty and ambiguity present in the

software projects. As a result the training and adaptation

algorithm used in the framework are capable to handle the

imprecision, explain the prediction via rules, provides

transparency in the prediction system, and could adapt to the

new environment when new data is obtainable. This work

includes the transparent FL-based framework which allows

contribution from experts, and is set with training and

adaptation algorithm for development effort prediction. This

work demonstrates the capabilities of the framework via

empirical validation carried out on artificial datasets and the

COCOMO.

Martin et al. [6] have investigated the contrast between Fuzzy

Logic Models (FLM) and Linear Regression Model (LRM)

because the engineers have the less capability which is being

offered by personal training, therefore they cannot support their

teams to generate reliable results. This work includes the

evaluation criterion which is based on the magnitude of error

relative to the estimate (MER) in addition to the mean of MER

(MMER). In this work, small programs are being developed by

programmers. Along with these programs, Fuzzy Logic Models

were generated to calculate the effort. Confirmation and

Validation of the models are done. The output thus generated

by the Fuzzy Logic model and Linear Regression produce the

similar predictive accuracy, so Fuzzy Logic Model can be used

as a substitute to estimate effort. Iman Attarzadeh et. al. (2010)

proposed a model for managing imprecision and uncertainty by

using the fuzzy logic systems. The proposed fuzzy logic model

shows well software effort estimate evaluation criteria as

compared to the traditional COCOMO. The experimental

results demonstrate that applying fuzzy logic technique to the

software effort estimation is a possible approach to addressing

the problem of uncertainty and vagueness [20]. Gharehchopogh

(2011) did a case study for software cost estimation using

Neural Network (NN) architecture for finding necessary effort

of new software. The results indicate that the NN model

provides the very best algorithmic method to predict and

estimate software costs [7].

Wei Lin Du et al. [8] proposed an approach combining the

neuro-fuzzy technique and the SEER-SEM effort evaluation

algorithm. The continuous rating values and linguistic values

are the inputs of the proposed model for avoiding the deviation

in estimation among related projects. The performance of the

proposed integrated method has been optimized by designing

and calculated with the data published in the historical projects.

The evaluated results specify that the estimation with the

proposed fuzzy model containing analogy reasoning make

better results in comparison with the existing techniques [9] that

uses feature selection algorithm. Xishi Huang et al. [10] also

developed neuro-fuzzy Constructive Cost Model (COCOMO)

for software cost estimation which uses the attractive features

of a neurofuzzy approach, like learning ability and good

interpretability, in COCOMO model. Chen et al. [19] concluded

that the COCOMO II model can be enhanced via WRAPPER

feature subset selection method developed by the data mining

community. Using data sets from the PROMISE storage area,

they showed WRAPPER considerably and dramatically

enhances COCOMO II’s predictive power.

3. Neural network models

Significant effort has been put into the research of increasing

software estimation models using neural networks [11, 12, and

13]. Neural networks are based on the principle of learning from

example with no previous information being specified. Neural

networks are characterized based on three entities such as

neurons, interconnection structure and learning algorithms.

Majority of the software models developed using neural

networks utilize multilayer feed-forward networks. The

improvement of such a neural network model starts with a

suitable layout of neurons, or connections between network

nodes. This involves defining the number of layers of neurons,

the number of neurons within each layer, and the manner in

which they are connected. The activation functions of the nodes

and the specific training algorithm to be utilized must also be

found out. Once the network has been built, the model must be

trained by offering it with a set of historical project data input

and the consequent known actual values for project effort. The

model then iterates on its training algorithm, routinely adjusting

the weights until the model weights converge. Once the

working out is complete and the suitable weights for the

network links are determined, new input can be offered to the

neural network to estimate the consequent project effort. In

general, large data sets are required to accurately train neural

networks.

4. Fuzzy logic models

A fuzzy method is a mapping between linguistic terms, such

as medium complexity and high cost that are attached to

variables. Thus an input into a fuzzy method can be either

numerical or linguistic with the same applying to the output. A

classic fuzzy system is made up of three major components

such as fuzzifier, fuzzy inference engine and defuzzifier. The

fuzzifier transforms the input to linguistic terms using

membership functions that signify how much a given numerical

value of some variable fits the linguistic term being considered.

The fuzzy inference engine performs the mapping among the

input membership functions and the output membership

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

221

functions using fuzzy rules that can be get from expert

knowledge of the relationships being modeled. The larger the

input membership degree, the stronger the rule fires, thus the

stronger the pull to the direction of output membership

function. Since numerous different output membership

functions can be contained in the corresponding rules triggered,

a defuzzifier carries out the defuzzification process to merge the

output into a single label or numerical value as needed.

5. COCOMO framework

COCOMO (Constructive Cost Model) is the finest known

algorithmic cost model published by Barry Boehm in 1981. It

was developed from the study of sixty three software projects.

The COCOMO model is a hierarchy of software cost estimation

models.

A. Basic COCOMO Model

Fundamental COCOMO computes software development

effort as a function of program size. Program size is expressed

in predicted thousands of source lines of code (SLOC).

COCOMO [10] applies to three classes of software projects: In

organic mode simple projects that engage small teams

functioning in well-known and stable environments. In Semi-

detached mode projects that engage teams with an assortment

of experience. It is in between organic mode and embedded

mode. In embedded mode complex projects that are developed

under rigid constraints with changing requirements. The basic

COCOMO equations are,

Effort Applied, E = a × (SLOC) b [man-months]

Development Time, D = c × (Effort Applied) d [months]

People required, [count]

Where, SLOC is the identify number of delivered lines

(expressed in thousands) of code for project, here the

coefficients a, b, c and d are depends upon the three modes of

improvement of projects.

6. COCOMO II and neuro fuzzy logic framework

A. COCOMO II model

It is degeneration based software cost estimation model and

thought to be the majority cited, best known and the most

plausible of all conventional cost prediction models.

COCOMO II consists of the following models [14]:

B. Application composition model

It assumes that systems are formed from reusable

components, scripting or database programming. It involves

prototyping efforts to solve potential high-risk issues such as

user interfaces, software/system communication, performance,

or technology maturity. It is used during the premature stages

of development when prototype of user interface is obtainable.

Software size estimates are based on application points / object

points, and a simple size/productivity formula is utilized to

estimate the effort required.

C. Early design model

To acquire rough estimates of a project's cost and duration

prior to determined its whole architecture. It uses a small set of

new cost drivers and new calculating equations. It utilizes

Unadjusted Function Points (UFP) as the measure of size.

D. Post architecture model

 On one occasion the system architecture has been designed,

a more precise estimate of the software size can be made. It

includes the actual development and maintenance of a software

product. One could use function points or LOC as size estimates

with this model. COCOMO II model describes various cost

drivers that are used in the Post Architecture model. The cost

drivers for COCOMO II are rated on a scale starting from Very

Low to Extra High.

E. Effort estimation

In COCOMO II model effort is expressed as Person-Months

(PM). A person month is the amount of time one person spends

functioning on the software development project for one month.

COCOMO II handles the number of person-hours per person-

month, as an adjustable factor with a nominal value of 152

hours per Person-Month. This number excludes time usually

devoted to vacations, holidays, and weekend time off. The

number of person-months is diverse from the time it will take

the project to finish. This is called the development schedule.

The inputs to the model are the Size of software development,

an exponent, E, a constant, A, and a number of values called

effort multipliers (EM). The number of effort multipliers based

on the model.

F. Requirement for effort estimation

 It would provide increased control of time and overall

cost profit in software development life cycle.

 Software development effort estimates are the origin

for project bidding and planning.

 Generally software effort estimation has even been

recognized as one of the three most demanding

challenges in software application areas. In the

development process, the cost and time estimates are

helpful for the preliminary rough validation and

monitoring of the project’s completion process. And

in addition, these estimates may be helpful for project

productivity assessment phases.

G. Neuro fuzzy logic

Neural networks and fuzzy logic combination is the general

idea behind the neuro-fuzzy system. NFS is a fuzzy system

collectively with neural networks to increase some

characteristics like flexibility and adaptability [16], [17], [18].

This work uses the second approach. There are 3 main

components in the intelligent model:

H. Neuro-fuzzy inference system (NFIS)

It manages the dependencies among cost drivers. The inputs

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

222

are the ratings of the cost drivers, and its output is the tuned

ratings of cost drivers.

I. Neuro-fuzzy subsystem (NFi)

 The input is the adjusted rating of the ith cost driver and the

output is the multiplier rate of the ith cost driver that is used for

input of the COCOMO. There are 22 cost drivers in our model.

Each cost driver represents one factor of the development

effort, such as product difficulty, applications experience etc.

To estimate the contribution, we use six qualitative rating

levels. When defined in linguistic terms, the six rating levels are

Very Low (VL), Low (L), Nominal (N), High (H), Very High

(VH) and Extra High (XH). Each rating level of each cost driver

relates to a quantitative value utilized in the COCOMO model.

Sub-model NFi is used to convert this rating of a cost driver into

a quantitative multiplier value and to calibrate these relations

by industry project data. In this work, we define a fuzzy set for

each linguistic term of every cost driver are, very low, low,

nominal, high, very high, extra high. We permit the

membership functions are triangular functions or other

functions, and prefer the universe of discourse to be the interval

[1, 6]. We use fuzzy numbers “about 1” to about 6” to represent

linguistic terms very low, low, nominal, high, very high, extra

high, respectively.

 Fig. 1. Proposed Architecture

COCOMO II consists of size, cost drivers and scale factors

input and effort as output which is measured in person months

(PM).The issue with software effort estimation is that it mostly

depends upon single values of size, scale factors and cost

drivers. The size of the project is estimated depends upon

previously completed projects that are somewhat related with

the current project. Also cost drivers and scale factors required

to have through assessment rather than assigning a fixed

numeric value. In the proposed model COCOMO II’s input

parameters are size, cost drivers and scale factors are taken into

consideration. This novel framework has attractive attributes,

chiefly the fact that it can be generalized to several different

situations and can be used to produce more specific models. In

actual fact, its generalization is one of the purposes of scheming

this framework. Its implementation is not limited to any

particular software estimation model. The algorithmic model in

the framework can be one of the current popular algorithmic

models such as COCOMO. When various algorithmic models

are implemented into this framework, the inputs and the non-

rating values are dissimilar.

Fig. 2. Neuro-fuzzy model

Fig. 3. FIS Editor

J. Performance evaluation

Many criteria to assess and compare effort estimation models

are proposed. One of these criteria is the magnitude of relative

error (MRE) which is defined for a project as follows:

 MRE is calculated for COCOMO II as well as for the

proposed neuro-fuzzy approach. It is found that MRE obtained

for the proposed model is quite less as compared to MRE

obtained by COCOMO II.

Another broadly used and more accurate measure is the pred

(l) which is defined as follows:

Where, N is the total number of projects and k is the number

of projects whose MRE is less than or equal to l.

7. Implementation and results

 This research will apply Constructive Cost Model

(COCOMO-II) using Mamdani Fuzzy Inference

System (FIS).
Table 1

Comparison between existing model and proposed model

Performance Using

13GMFS

Using

11GMFS

Fuzzy

Coco

mo

Fuzzy Cocomo-II Neuro-

Fuzzy

Neuro-Fuzzy

With Cocomo-II

MMRE 26.90 30.38 33.21 37.92 41.98 46.25 49.38

PRED 53 36 24 15 12 10 7

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

223

 The results were analyzed by the criterion – MMRE

(Mean Magnitude of Relative Error).

 Less MMRE means the result is more accurate.

Fig. 4. Target

Fig. 5. Error rate

Fig. 6. MMRE

Fig. 7. PRED

8. Conclusion

A critical issue for project managers is the accurate and

reliable estimates of the required software development effort,

particularly in the early stages of the software development life

cycle. Software effort drivers generally have properties of

uncertainty and ambiguity when they are measured by human

judgment. Cost drivers in algorithmic software cost estimation

are frequently expressed through linguistic assessments and

they generally represent high level concepts for which a single,

exact measurement scale is not available. This motivates the use

of neuro-fuzzy techniques to model evaluated inputs and their

assessment procedures. To date, neuro-fuzzy logic modeling

techniques have been shown to be the most effective

approximation method to handle imprecise data. This work

suggests a new approach for finding a software projects

development effort. The major difference between our work

and previous works is that neuro-fuzzy technique is used for

software development effort estimation and then it’s validated

with collected data. Benefits of neural network and fuzzy logic

are combined and learning ability and good generalization are

obtained. The major benefit of this model is its good

interpretability by using the fuzzy rules and another great

benefit of this research is that it can put together expert

knowledge project data and the learning ability of neural

network model into one common framework that may have a

wide range of applicability in software estimation. The results

showed that neuro-fuzzy system is much superior to the

previous methods.

References

[1] Idri, A. and Khoshgoftaar, T. M. and Abran, A., (2002), "Investigating

Soft Computing in Case-based Reasoning for Software Cost Estimation”,

Engineering Intelligent Systems for Electrical Engineering and

Communications, Vol. 10, No. 3, pp.147-157.

[2] Luiz Fernando Capretz and Venus Marza,Improving Effort Estimation by

Voting Software Estimation Models Hindawi Publishing Corporation

Advances in Software Engineering Volume 2009.

[3] Neha Sharma, Amit Sinhal, Bhupendra Verma, “Software Assessment

Parameter Optimization using Genetic Algorithm”, International Journal

of Computer Applications, Vol. 72, No.7, pp. 8-13, May 2013.

[4] J. N. V. R Swarup Kumar, Aravind Mandala, M. Vishnu Chaitanya, G. V.

S. N. R.V Prasad, “Fuzzy logic for Software Effort Estimation Using

Polynomial Regression as Firing Interval”, International Journal of

Computer Technology Applications, Vol. 2, No. 6, pp. 1843-1847, Dec.

2011.

[5] Moataz A. Ahmed, Moshood Omolade Saliu, Jarallah AlGhamdi,

Adaptive Fuzzy Logic-based framework for software effort prediction,

Information and Software Technology 47(2005) 31-48.

[6] Cuauhtemoc Lopez-Martin, Cornelio Yanez-Marquez, Agustin

Gutierrez-Tornes, Predictive accuracy comparison of Fuzzy models for

software development effort of small programs, the Journals of systems

and software 81(2008) 949-960.

[7] F.S. Gharehchopogh, “Neural networks application in software cost

estimation: A case study”, IEEE International Symposium on Innovations

in Intelligent Systems and Applications (INISTA), pp. 69-73, 15-18 June

2011.

[8] Wei Lin Du, Danny Ho and Luiz Fernando Capretz, "Improving Software

Effort Estimation Using Neuro-Fuzzy Model with SEER-SEM”, Global

Journal of Computer Science and Technology, Vol. 10, No. 12, Pp. 52-

64, Oct 2010.

[9] Pichai Jodpimai, Peraphon Sophatsathit and Chidchanok Lursinsap,

“Estimating Software Effort with Minimum Features using Neural

Functional Approximation”, ICCSA.2010.

[10] X. Huang, Danny Ho, J. Ren, L.F. Capretz, “Improving the COCOMO

model using a neuro-fuzzy approach”,Applied Soft Computing , Vol.7,

Issue 1, 2007, pp. 29-40.

[11] A.R. Gray, S.G. Mac Donell, A comparison of techniques for developing

predictive models of software metrics, Inf. Software Technol. 39 (1997)

425–437.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-1, January-2019

www.ijresm.com | ISSN (Online): 2581-5792

224

[12] A. Idri, T.M. Khoshgoftaar, A. Abran, Can neural networks be easily

interpreted in software cost estimation? In Proceedings of IEEE

International Conference on Fuzzy Systems, 2002, 1162–1167.

[13] G. Wittig, G. Finnie, Estimating software development effort with

connectionist models, Inf. Software Technol. 39 (1997) 469–476.

[14] Putnam L. H. and Myers W., Measures for Excellence, Prentice Hall,

Englewood Cliffs, NJ, 1992.

[15] S. Mitra, Y.Hayashi, “Neuro-Fuzzy Rule Generation: Survey in Soft

Computing Framework”, IEEE Transactions on Neural Networks,

Vol.11, No.3, 2000, pp. 748-768.

[16] D. Nauck, F. Klawonn, R. Kruse, “Foundations of Neuro-Fuzzy

Systems”, Chichester, 97.

[17] D. Nauck, “A Fuzzy Perceptron as a Generic Model for Neuro-Fuzzy

Approaches”, In Proceedings of Fuzzy-Systeme‟94, 2nd GI-Workshop,

Munich, Semen Corporation, 1994.

[18] M.O. Saliu, “Adaptive Fuzzy Logic Based Framework for Software

Development Effort Prediction”, A Thesis Presented to the DEANSHIP

OF GRADUATE STUDIES, King Fahd University of Petroleum &

Minerals Dhahran, April 2003.

[19] Chen Z., Menzies T., and Port D., “Feature Subset Selection Can Improve

Software Cost Estimation Accuracy,” in Proceedings of Workshop

Predictor Models in Software Engineering, California, pp. 245-248, 2005.

[20] I. Attarzadeh, Siew Hock Ow, “A novel soft computing model to increase

the accuracy of software development cost estimation”, IEEE 2nd

International Conference on Computer and Automation Engineering

(ICCAE), Vol. 3, pp. 603 - 607, 26-28 Feb. 2010.

