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Abstract: We investigate the convective study of heat transfer 

flow of a viscous electrically conducting fluid in a vertical wavy 

channel under the influence of an inclined magnetic fluid with heat 

generating sources. The walls of the channels are maintained at 

constant temperatures. The equations governing the flow and heat 

the wavy wall. The velocity and temperature distributions are 

investigated for a different Parameters. The rate of heat transfer 

are numerically evaluated for a different variations of the 

governing parameters. 

 

Keywords: heat transfer, radiation effect, hall effect 

1. Introduction 

In recent years, energy and material saving considerations 

have prompted an expansion of the efforts at producing efficient 

heat exchanger equipment through augmentation of heat 

transfer. The study of buoyancy driven convection flows 

through a porous media has been stimulated by its applications 

in several geophysical and engineering problems. The two main 

configurations in which the heat transfer driven flow in a porous 

medium. This convection heat transfer potential flow through a 

porous medium is rapidly growing as an independent branch in 

Fluid Mechanics and Heat Transfer. This problem of combined 

buoyancy driven thermal and mass diffusion has been studied 

in parallel plate geometries by a few authors in the recent times, 

notably Lai F.C. [11], [12], Angirasa et al [3] Abdul [2]. Natural 

convection in differentially heated vertical enclosures is of 

fundamental interest to many practical applications. Several 

investigators have presented analytical and experimental results 

on convection in the rectangular cavity with vertical walls at 

constant temperatures, the horizontal walls being insulated [6], 

[12]. Reviewed the extensive work and mentioned about [12] 

who have contributed to the forced convection with heat 

generating source. AbdEl – Naby et al [1] studied the effects of 

radiation on unsteady free convective flow pasta semi-infinite 

vertical plate with variable surface temperature using Crank – 

Nicolson finite difference method. Chamkha et al. [7] analyzed 

the effects of radiation on free convection flow past a semi-

infinite vertical plate with mass transfer, by taking into account 

the buoyancy ratio parameter N Ganesan and Loganadhan [9] 

studied the radiation and mass transfer effects flow of 

incompressible viscous fluid past a moving vertical cylinder  

 

using Rosseland approximation by the Crank – Nicolson finite 

difference method. Takhar et al. [15] considered the effects of 

radiation on MHD free convection flow of a radiating gas past 

a semi-infinite vertical plate. 

Theoretical study of free convection in a horizontal porous 

annulus, including possible three dimensional and transient 

effects. Similar studies for fluid filled annuli are available in the 

literature [12]. In view of this, several authors, notably Tunc et. 

al. [16], Oliveira et al [18]. Martin ostoja [14], El – Hakein [8], 

and Bulent Yesilata [6] have studied the effect of viscous 

dissipation on convective flows past an infinite vertical plates 

and through vertical channels and ducts. 

The application of electromagnetic fields in controlling the 

heat transfer as in aerodynamic heating leads to the study of 

magneto hydrodynamics heat transfer.  The MHD heat transfer 

has gained significance owing to advancement of space 

technology.  The MHD heat transfer can be divided into 

sections.  One contains problems in which the heating is an 

incidental by product of the electromagnetic fields as in the 

MHD generators and pumps etc. and the second contains of 

problems in which the primary use of electromagnetic fields is 

to control the heat transfer.  With the fuel crisis deepening all 

over the world there is great concern to utilize the enormous 

power beneath the earth’s crust in the geothermal region.  

Liquid in the geothermal region is an electrically conducting 

liquid because of high temperature.   

2. Formulation and solution of the problem 

We consider the steady flow of an incompressible, viscous, 

electrically conducting fluid confined in a vertical channel 

bounded by two wavy walls under the influence of an inclined 

magnetic field of intensity Ho lying in the plane (y-z).The 

magnetic field is inclined at an angle  to the axial direction k 

and hence  its components are ))(),(,0( 00  CosHSinH

.In view of the waviness of the wall the velocity field has 

components(u,0,w)The magnetic field in the presence of fluid 

flow induces the current( ),0,( zx JJ .We choose a rectangular 

cartesian co-ordinate system O(x,y,z) with z-axis in the vertical 

direction and the walls at )(
L

z
fx


 . 
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                          When the strength of the magnetic field is 

very large we include the Hall current so that the generalized  

Ohm’s law is modified to 

  )( HxqEHxJJ eee                         (1) 

where q is the velocity vector. H is the magnetic field intensity 

vector.E is the electric field, J is the current density vector e

is the cyclotron frequency, e  is the electron collision time, 

is the fluid conductivity and e is the magnetic permeability. 

Neglecting the electron pressure gradient, ion-slip and thermo-

electric effects and assuming the electric field E=0, equation 

(6) reduces  

  )()( 00  wSinHSinJHmj ezx    (2) 

  )()( 00  SinuHSinJHmJ exz     (3) 

where m= ee  is the Hall parameter. 

On solving equations (2.2)&(2.3) we obtain  
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where u,w are the velocity components along x and z 

directions respectively, 

The Momentum equations are  
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Substituting Jx and Jz from equations (4) & (5) in equations (6) 

& (7) we obtain  
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The energy equation is  
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    (10) 

The equation of state is  

 )(0 oTT              (11) 

Where T is the temperature and concentration in the fluid. kf is 

the thermal conductivity, Cp is the specific heat constant 

pressure,  is the coefficient of thermal expansion, Q is the 

strength of the heat source . 

The flow is maintained by a constant volume flux for which a 

characteristic velocity is defined as 

   




Lf

Lf

wdx
L

q
1

                       (12) 

The boundary conditions are 

 u= 0 ,w=0 T=T1 on )(
L

z
fx


               (13) 

 w=0,   w=0,  T=T2  on )(
L

z
fx


               (14) 

 

Invoking Rosseland approximation for radiation flux we get 

  
x

T
q

R
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and linearising  
4T  about Te by using Taylor’s expansion and 

neglecting higher order terms we get 

  
434 34 ee TTTT   

where 
 is the Stefan-Boltzman constant and  R  is the mean 

absorbing coefficient. 

Eliminating the pressure from equations (8) & (9) and 

introducing the Stokes Stream function  as  
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u
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the equations (2.8)&(2.9) ,(2.10) in terms of  is 
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On introducing the following non-dimensional variables  

 Lzxzx /),(),(  ,
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the equation of momentum and energy in the non-dimensional 

form are 
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where 
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The corresponding boundary conditions are 
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3. Analysis of the flow 

Introduce the transformation such that  
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 For small values of  <<1,the flow develops slowly with 

axial gradient of order  and hence we take    ).1(O
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Using the above transformation the equations reduce to  
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 where 
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Assuming the slope  of the wavy boundary to be small we 

take 
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Substituting (22) in equations (20) & (21) and using (23) and 

equating the like powers of  the equations and the respective 

boundary conditions to the zeroth order are 
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and to the first order are 
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with 
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4. Shear stress and nusselt number  

The shear stress on the channel walls is given by 
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and the corresponding expressions are 
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The rate of heat transfer (Nusselt Number) on the walls has 

been calculated using the formula 
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5. Results and discussion of the numerical results 

We investigate the effect of Hall Currents and radiation effect 

on convective heat transfer flow of a viscous electrically 

conducting fluid in a vertical wavy channel in the presence of 

heat sources. The walls are maintained at constant 

temperatures. The velocity and temperature are analyzed for 

different values The variation of ‘w’ with Hartmann ‘M’ and 

Hall parameter ‘m’ shows that higher the Lorentz force larger 

|w| in the flow region. An increase in m £ 2.5 accelerates ‘w’ 

and for further increase in m³ 3.5 we notice a depreciation in the 

axial velocity in flow region (Fig. 1). The depreciation for 

smaller values of N is remarkable and marginal for higher 

values of ‘N’ (Fig. 2).The variation of ‘u’ with reference to M 

and m shows that higher the strength of the magnetic field larger 

‘u’ in the flow region. An increase in the Hall parameter m £ 

2.5 enhances ‘u’ in the flow region and depreciates with higher 

m ³ 3.5 (Fig. 3). Thus the presence of the radiative heat transfer 

depreciates the secondary velocity in the flow region (Fig. 4 

).The  non-dimensional temperature distribution (q) is shown in 

Figs.5 and 6 for different parameter values. From Fig.5 it is find 

that higher the strength of the magnetic field (M £ 6) smaller 

the axial temperature and for further higher strength (M ³ 10) 

larger the actual temperature. An increase in Hall parameter m 

£ 2.5 results in a depreciation in the axial temperature and for 

further values of m ³ 3.5 we notice an enhancement in the axial 

temperature everywhere in the flow region It is observed that 

higher the constriction of the channel walls larger the axial 

temperature in flow region. An increase in the radiation 

parameter N leads to depreciation in the axial temperature (Fig. 

6). 
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Table 1 

Shear stress () at = +1 

G I II III IV V VI VII 

103 0.588 1.177 12.723 0.259 0.689 0.594 0.602 

5x103 0.175 3.046 32.031 0.075 0.275 1.464 1.532 

-103 -0.096 -1.316 -13.020 -0.066 -0.961 -0.612 -0.639 

-5x103 -0.212 -3.186 -32.328 -0.202 -0.262 -1.504 -1.569 

M 2 4 6 2 2 2 2 

m 0.5 0.5 0.5 1.5 2.5 0.5 0.5 

 2 2 2 2 2 4 6 

 

Table 2 

Shear stress () at = +1 

G I II III IV V VI 

103 0.110 0.059 0.635 0.470 0.509 0.525 

5x103 0.321 0.175 1.605 1.203 1.299 1.492 

-103 -0.170 -0.096 -0.659 -0.507 -0.546 -0.563 

-5x103 -0.380 -0.212 -1.630 -1.241 -1.337 -1.429 

 -0.3 -0.5 -0.7 -0.5 -0.5 -0.5 

N1 0.5 0.5 0.5 1.5 5 10 

 
Table 3 

Shear stress () at = -1 

G I II III IV V VI VII 

103 -16.63 -28.49 -38.49 -16.9 -17.21 -15.39 -14.36 

5x103 -15.50 -253.96 -39.33 -15.5 -15.50 -13.49 -12.30 

-103 -17.39 -26.22 -40.84 -17.39 -18.39 -15.08 -13.10 

-5x103 -15.96 -25.75 -39.06 -14.96 -15.96 -14.08 -125.98 

M 2 4 6 2 2 2 2 

m 0.5 0.5 0.5 1.5 2.5 0.5 0.5 

 2 2 2 2 2 4 6 
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The stress (t) at h = ±1 are evaluated for different values of 

G, M, m, a, b, N1, R, x and are shown in tables 1-8. The 

variation of t with Grashof ‘G’ shows that an increase in G > 0 

reduces |t| at h = ±1 while it enhances at h = +1 and depreciates 

at h = -1 with increase in |G|. The variation of t with M shows 

that higher the strength of magnetic field larger the |t| at both 

the walls. An increase in the Hall parameter m £ 1.5 reduces |t| 

and enhances with higher m ³ 2.5 at h = +1 and at h = = -1 |t| 

enhances with ‘m’ for all ‘G’. With reference variation of t with 

‘a’ reveals that |t| enhances at h = +1 and reduces at h = = -1. 

With increase in the strength of heat source (tables 1 and 3). 

The influence of surface geometry on the stress is shown in 

tables 2 and 4. Higher the constriction of the channel walls 

smaller |t| and for further lowering of the constriction larger |t| 

at h = +1 and at h = = -1 larger |t| for all G.  An increase in the 

radiation parameter N1 results an enhancement of |t| at h = +1 

while at h = = -1, |t| enhances with N1 £ 1.5 and depreciates 

with higher N1 ³ 5.  

 The average Nusselt number (Nu) which measures the rate 

of heat transfer across the boundaries is shown in tables 5-8  for 

different variations. It is observed that the rate of heat transfer 

enhances with increase in |G| at h = ±1. An increase in M 

enhances |Nu| at h = +1 and at h = -1, |Nu| reduces with M £ 4 

and enhances with M ³ 6. Also the rate of heat transfer 

depreciates with increase in Hall parameter ‘m’. With reference 

of Nu with heat source parameter ‘a’, we find a decay in the 

Table 4 

Shear stress () at = -1 

G I II III IV V VI 

103 -17.46 -16.63 -19.21 -19.38 -15.17 -15.56 

5x103 -14.137 -15.50 -18.39 -14.69 -12.91 -12.02 

-103 -15.57 -17.39 -19.76 -16.88 -15.06 -14.82 

-5x103 -14.37 -16.96 -18.53 -14.69 -12.82 -12.00 

 -0.3 -0.5 -0.7 -0.5 -0.5 -0.5 

N1 0.5 0.5 0.5 1.5 5 10 

 

Table 5 

Nusselt number (Nu) at = +1 

G I II III IV V VI VII 

103 0.779 2.690 4.717 0.679 0.579 -0.175 -0.295 

5x103 1.975 6.831 8.015 1.675 1.475 -0.410 -0.711 

-103 -0.816 -2.829 -3.014 -0.616 -0.516 0.138 0.258 

-5x103 -2.013 -6.969 -4.312 -1.812 -1.613 0.373 0.674 

M 2 4 6 2 2 2 2 

m 0.5 0.5 0.5 1.5 2.5 0.5 0.5 

 2 2 2 2 2 4 6 

 
Table 6 

Nusselt number (Nu) at = +1 

G I II III IV V VI 

103 0.201 0.779 1.60 -0.157 -0.298 -0.311 

5x103 0.546 1.975 4.02 -0.364 -0.716 -0.749 

-103 -0.260 -0.816 -1.63 0.119 0.260 0.274 

-5x103 -0.606 -2.012 -4.05 0.327 0.679 0.712 

 -0.3 -0.5 -0.7 -0.5 -0.5 -0.5 

N1 0.5 0.5 0.5 1.5 5 10 

 
Table 7 

Nusselt number (Nu) at = -1 
G I II III IV V VI VII 

103 15.58 10.06 5.73 4.29 3.97 14.68 13.71 

5x103 16.71 14.88 6.56 5.71 4.71 15.89 14.30 

-103 14.88 13.60 5.34 4.88 3.88 13.83 12.38 

-5x103 15.26 14.58 6.31 5.26 4.26 14.52 13.98 

M 2 4 6 2 2 2 2 

m 0.5 0.5 0.5 1.5 2.5 0.5 0.5 

 2 2 2 2 2 4 6 

 
Table 8 

Nusselt number (Nu) at = -1 
G I II III IV V VI 

103 9.16 15.58 18.54 8.20 9.27 9.19 

5x103 13.87 15.71 18.33 13.49 12.11 12.36 

-103 11.68 14.88 17.92 11.83 9.89 9.63 

-5x103 12.13 15.26 18.17 13.02 12.59 11.82 

 -0.3 -0.5 -0.7 -0.5 -0.5 -0.5 

N1 0.5 0.5 0.5 1.5 5 10 
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magnitude of Nu with increase in ‘a’, at both the walls (tables 

5 and 7).The influence of surface geometry on Nu is exhibited 

in tables 6 and 7. Higher the constriction of the channel walls 

larger the rate of heat transfer at both the walls. An increase in 

the radiation parameter N¬¬1 £ 1.5 reduces |Nu| and enhances 

with higher N1 ³ 5 and at h = -1 the rate of heat transfer decays 

in magnitudes (tables 6 and 8).  

6. Conclusion 

This paper presented radiation effect on convective heat 

transfer in a vertical wavy channel with Hall effects. 
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