
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

200

Abstract: In personal identification and online banking

authorization codes play an important role require users to

provide a code for authorization purposes. However,

authorization codes in application can be stolen and forwarded by

attackers, which introduces serious security concerns. In this

paper, we propose Code Tracker, a hybrid approach to track and

protect authorization codes. When the authorization code is sent

out via either SMS messages or network connections (taint sinks),

we extract the taint tag of the data and enforce standard security

policies to prevent the code from being hacked and attacked from

unauthorized access. SMS-stealing Android malware samples to

evaluate the system. In this paper we used cryptographic

algorithm to protect from SMS stealing from unauthorized access.

The results show that Code Tracker a lightweight and hybrid

approach can effectively track and protect SMS authorization

codes with a high performance.

Keywords: Tags, short message service (SMS) authorization

1. Introduction

Smart phones are widely used in our daily life. Increasingly

more users leverage smart phones for online transaction, bank

transfers and other operations. Simultaneously increasingly

more websites and applications (apps for short). leverage codes

delivered via short message service (SMS) messages to

authorize users. We call this type of code an authorization code

in this paper. For instance, an SMS authorization code can be

required when users log into a banking application or reset their

passwords. Leveraging SMS codes for authorization is

convenient; however, it may present security concerns. If the

code is stolen by attackers, it can cause financial losses to users.

On the other hand, SMS-stealing malware is emerging [1],

[2]. A research report from the Qihoo 360 companies [3]

revealed that 6:1% of mobile malware is stealing information.

Before Android version 4.4 (KitKat) [5], malicious apps could

intercept SMS messages to retrieve authorization codes and

then block the SMS broadcasting stealthily without informing

users. However, starting with Android version 4.4, the SMS

mechanism has been changed. Malicious apps are unable to

block SMS broadcasting, and the system SMS app will get the

SMS messages. However, malicious apps can still steal SMS

messages by registering a broadcast receiver that listens to

certain system events or requesting the READ_SMS permission

to retrieve SMS messages from the database. Noted that a

number of systems have been proposed to protect SMS

authorization codes. For instance, TISSA [6] can provide null

or bogus values instead of real data, which avoids data leakage

(including SMS authorization codes). However, TISSA is

currently implemented on legacy Android's Dalvik runtime and

not the newly designed ART runtime. Secure SMS [7] is

another system used to protect SMS messages by changing the

Android framework. In particular, when an SMS message

arrives, Secure SMS searches the message text. If a predefined

keyword is found in the message, it adjusts the apps' receiving

sequence of text message sin the system so that the default SMS

app can get the text message first. Then, it stops the SMS

broadcasting to prevent malicious apps from getting the

message. This system works but may cause compatibility issues

in some benign apps that rely on received text messages. In

addition, starting with Android version 4.4, the SMS

broadcasting mechanism has been changed, and the new

unordered broadcasting cannot be blocked. From another

perspective, because SMS authorization codes are a type of

sensitive data in smart phones, they can be protected with the

well-known taint tracking technique. Taint Droid [8] is such a

system for real-time privacy monitoring that can be used to

protect authorization codes. However, Taint Droid is

implemented on the Dalvik virtual machine under Android

version 4.4 and has not been applicable for the newly

introduced ART runtime since Android 4.4. Taint ART [9]

implements a practical multi-level information-_own tracking

system on Android's ART virtual machine and can be used to

track and protect private data. However, its extensibility is an

issue because the bit length of a register (32 bits) for taint

indication is limited. ARTist [10] is a system in Android that

tracks private data by incrementing apps using a customized

dex2oat tool. ART is an excellent system; however, it only

works for intra-application tracking and lacks the inter-

application tracking that is necessary for SMS authorization

code protection. In this paper, we propose Code Tracker, a

lightweight approach to track and protect SMS authorization

codes in Android SMS messages. Specially, Code Tracker adds

taint tags to mark the authorization code at the very beginning

of the incoming SMS messages, and it modifies the related

array structure, array operations, string operations, IPC (Inter-

Process Communication) mechanism, and _le operations for the

A Novel Technique to Protect the Stealing of

Authorization Code Using Hybrid Approach

M. Christina Ranjitham1, C. Karpagavalli2, D. Asir3

1,2,3Assistant Professor, Department of Computer Science and Engineering, St. Mother Theresa Engineering

College, Vagaikulam, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

201

secondary storage of SMS authorization codes to ensure that the

tags cannot be removed. Finally, when the authorization code is

sent out (via either SMS or the network), Code Tracker extracts

the tag of the data and checks with predefined security policies.

By doing so, it prevents authorization codes from being stolen

by attackers. We have developed a prototype of Code Tracker

on an Android system with the ART runtime, and we

collected1; 218 state-of-the-art SMS-stealing Android malware

samples to evaluate the system. The evaluation results show

that Code Tracker can track and protect SMS authorization

codes from being stolen. We further analyzed the remote server

addresses where the stolen authorization codes are forwarded

to, and we found that 87:66% of them are located in

China.1This may be due to the popularity of third-party app

stores in China with less regulation. The evaluation of the

performance overhead shows that Code Tracker incurs a large

overhead. In summary, this paper makes the following

contributions:

 We propose a lightweight approach with data-_own

tracking to protect SMS authorization codes in

Android smart phones, called Code Tracker.

 We have implemented a prototype of Code Tracker in

the Android ART runtime. Code Tracker adds taint

tags to the SMS authorization code at the very

beginning of the incoming SMS messages and ensures

that the tags cannot be removed when propagating

through the system.

 When the authorization code is sent out, Code Tracker

protects the code by enforcing predefined security

policies.

 We have evaluated our system with a collection of

malware samples. The evaluation results demonstrate

the effectiveness and low performance overhead of our

system. The remainder of the paper is structured as

follows.

 We proposed the cryptographic algorithm to protect

the SMS stealing from third parties it’s also take less

time to perform

The remainder of the paper is structured as follows.

We first introduce the necessary background information in

Section II. We illustrate the design, implementation, and

evaluation of our system in Section III, Section IV, and Section

V, respectively. We discuss the limitations and potential

improvements to our system in Section VI, and the related work

is presented in Section VII. Finally, we conclude the paper in

Section VIII.

2. Background

In this section, we will briefly introduce the key concepts of

the Android SMS system, as well as the Android runtime

environment, to provide necessary background information for

our proposed approach.

A. Android SMS system

In Android, when receiving a text message, the system sends

the message from the RLI (Radio Layer Interface) layer to the

framework layer. The framework layer then packs the text

message into an SMS PDU and sends a broadcast indicating the

receiving of an SMS message. All apps with the

RECEIVE_SMS permission will receive the broadcast along

with the SMS message if they have registered the

SMS_RECEIVED_ACTION action. Before Android version

4.4, SMS broadcasting was ordered, and apps with higher

priority could access SMS messages first and then discard the

messages, which make apps with low priority unreachable to

the SMS messages. This mechanism has been abused by

malware to intercept SMS messages [4]. In addition, if a

malicious app has the permissions (READ_SMS or

WRITE_SMS) to directly operate on the SMS data base, it

could monitor the database continuously. Once an SMS

authorization

Code is received, it could steal the code and then delete it.

Starting with Android version 4.4, the SMS system has been

changed. When the system receives a text message, the

framework layer encapsulates the text message into an SMS

PDU and sends it with two types of broadcasting. One type is

ordered broadcasting, i.e., SMS_DELIVER_ACTION, in

which only the default SMS app can receive it. In other words,

only the default SMS app has the permission to delete and insert

the text messages to the SMS database. The other type is

unordered broadcasting, i.e., SMS_RECEIVED_ACTION, in

which the broadcasting cannot be interrupted, and all apps can

receive SMS messages by registering the broadcasting. Due to

this difference, malicious apps cannot intercept and delete the

received SMS messages, but they still can steal and forward the

SMS messages to remote servers.

B. Android runtime environment

 On an Android system, each app is running inside a

separated runtime environment and has its own unique running

environment. This runtime environment was called the Dalvik

runtime in old Android versions and is called the ART runtime

in Android versions 5.0 and above. Dalvik is a register based

virtual machine that will translate a dex _le into an odex _le

with the dexopt command and then execute it. To further

improve the performance of Android, Google introduced a new

Android runtime, i.e., ART (Android Runtime) [11], which

adopts the AOT (ahead of time) mechanism. When an Android

app is being installed, the ART virtual machine leverages the

dex2oat tool to transform the app's dex _le into an oat _le, which

actually compiles the byte code into native machine code.

When the app is running, the machine code will be directly

executed, which greatly improves the performance. The

transition from the Dalvik to ART runtime leads to several

challenges to the taint tracking system. For instance, Taint

Droid [8] is implemented in Dalvik, which stores the taint tags

by applying extra space adjacent to the variable sin the stack of

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

202

the Dalvik virtual machine. In the ART runtime, some of the

parameters are stored directly in registers. To support taint

tracking in the ART runtime, the method of n storing taint tags

should be changed accordingly. This is only one challenge, and

we will illustrate how to implement taint tracking on the ART

runtime in Section IV.

C. Initial study of the SMS-stealing malware samples

1) Permission analysis

To systematically understand the malicious behaviors of

SMS-stealing malware, we have collected 1; 218 malicious

samples from three websites, i.e., Virus Total [14], Virus Share

[15], and Contagion Mobile [16]. We found that most samples

request the permissions related to SMS and the network.

Among these 1; 218 collected malware samples,1; 015 of them

(83:33%) request RECEIVE_SMS permission,799 (65:60%) of

them request READ_SMS permission,1; 020 samples (83:74%)

request SEND_SMS permission, and1; 005 samples (82:51%)

request INTERNET permission.

2) Two methods to obtain SMS authorization codes

We then decompiled these samples to further understand the

methods used to steal the SMS authorization code. We found

that these samples usually leverage two different methods to

steal SMS messages. One is through the SMS broadcast

receiver, and the other is through the SMS database monitoring

mechanism. Among the 1; 218 samples that we collected, 429

of them steal messages through the SMS broadcast receiver,

120 of them steal messages by monitoring the SMS database,

and 336 of them steal messages using both mechanisms.

 SMS broadcast receiver: As mentioned in Section II-

A, before Android version 4.4, a malicious app could

obtain text messages ahead of other apps by setting its

priority to a higher value and then it blocks the SMS

broadcast. This could prevent other apps (the system

SMS app for example) from receiving the SMS

messages. In Android versions 4.4 and above, a

malicious app can still receive text messages via

registering a broadcast receiver, but it cannot block the

message broadcast.

 Monitoring SMS database: Malicious apps with

READ_SMS permission are able to monitor the SMS

database. When a new SMS message is received and

inserted into the SMS database, the monitor will be

informed.

3) Two methods to send out SMS authorization codes

 We further installed the samples on an LG Nexus 5 phone

and captured. The results show that there are two main methods

that the samples use to send out the stolen SMS messages:

through SMS messages and through the network interface.

 SMS forwarding: If a malicious app has the

SEND_SMS permission, it is easy for the app to

forward the stolen authorization code through another

SMS message by invoking the well-defined system

APIs, e.g., send Text Message().

 Network forwarding: If a malicious app has the

INTERNET permission, it can forward the

authorization code through the network interface. The

possible channels include emails, HTTP requests, and

direct TCP/UDP sockets.

3. System design

A. Threat model

In this work, the SMS authorization code is the user's private

data that need to be protected. Third-party apps installed on the

system are not trusted either because they are malicious or

vulnerable. These apps can steal SMS authorization codes in

smart phones and forward the codes to a remote server. Similar

to other works, trust the underlying Android framework and the

operating system. While the physical security of the devices

(including the smart phones and the SIM cards) is out of the

scope of this work.

B. Overall design

The goal of our work is to track and protect authorization

codes in SMS messages. To achieve this, there are several

challenges that need to be addressed. First, we must determine

whether a text message contains an authorization code and then

mark it with the taint tag. Second, the SMS authorization code

could be processed in many locations, e.g., it might be copied

or passed to a new variable or be saved to the SMS database.

The taint tags need to be reversed and propagated in these

scenarios. Third, we need to determine the correct place to

enforce pre- security policies to ensure that the SMS

authorization code cannot be stolen. To overcome these

challenges, we propose a lightweight approach to track and

protect SMS authorization codes, called Code Tracker. The

overall design of Code Tracker is shown in Figure 1. As marked

in digital numbers in Figure 1, there are 15 possible steps in the

processing of SMS authorization codes. These steps are

described as follows: 1, Android receives an SMS message; 2-

3, according to the predefined rules ,the SMS message is

marked as a potential SMS authorization code by adding a t_p

tag; 4, an SMS message with the t_ptag is sent to the default

system SMS app and the third part apps that register as an SMS

broadcast receiver; 5,the system SMS app inserts the SMS

content into the SMS database and adds the t_p tag as an extra

extended attribute to the SMS database _le; 6, a third-party app

fetches an SMS message from the SMS database, and the

content of the message is marked with the t_p tag, which is

obtained from the extra extended attribute of the SMS database

_le; 7, a database taint tag, i.e., t_d, which represents that the

data are read from the SMS database, is added to the SMS

message;8-9, it determines whether the message contains an

authorization code; if so, it adds a t_a tag to the SMS

message;10, a third-party app obtains the SMS authorization

coded at from the SMS database, which contains three taint tags

,i.e., t_a, t_d, and t_p. These tags are denoted as t_a|d|p;11-12,

the SMS messages are sent through the SMS interface or the

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

203

network interface; 13-15, it extracts the tags of the data to be

sent out and then processes them according to the predefined

security policies.

C. Identify the SMS authorization code

To identify an SMS authorization code and then apply the

taint tag, our system has to determine whether an SMS message

contains an authorization code. First, we need to decide when

to identify the authorization code. Note that the Android SMS

system mainly obtains SMS messages via SMS broadcasting or

by reading from the SMS database. Therefore, we only need to

determine whether an SMS message contains an authorization

code before the SMS broadcasting and after the message is

fetched from the SMS database

However, because the framework layer of Android will not

have decoded the message content before the SMS

broadcasting, it is difficult for us to recognize the authorization

code by searching the content of the message. Therefore, we

leverage the sender address of the SMS message to determine

whether the message possibly contains an authorization code; if

so, we mark it as a potential SMS authorization code. We

maintain a list of sender addresses of SMS authorization codes,

and we treat all the SMS messages that originate from these

addresses as messages potentially containing SMS

authorization codes. After the SMS message can be read from

the SMS database, we search the content of the message to

obtain the string pattern of the authorization code to determine

whether the message contains an authorization code. After

identifying an SMS message that contains an authorization code

(or potentially contains such a code), we mark and track the

message by adding a tag (or taint tag) to it (the marked message

is called a taint source). It is important to note that if we add

tags to all the variables in the system, it can better track the data,

but the memory overhead will become a concern. We observe

that an SMS message is generally stored in a character or byte

array; therefore, we only need to add tags in character and byte

arrays. In addition, we add one tag for each array to reduce the

memory overhead. However, because the framework layer of

Android will not have decoded the message content before the

SMS broadcasting, it is difficult for us to recognize the

authorization code by searching the content of the message.

Therefore, we leverage the sender address of the SMS message

to determine whether the message possibly contains an

authorization code; if so, we mark it as a potential SMS

authorization code. We maintain a list of sender addresses of

SMS authorization codes, and we treat all the SMS messages

that originate from these addresses as messages potentially

containing SMS authorization codes. After the SMS message

can be read from the SMS database, we search the content of

the message to obtain the string pattern of the authorization

code to determine whether the message contains an

authorization code. After identifying an SMS message that

contains an authorization code (or potentially contains such a

code), we mark and track the message by adding a tag (or taint

tag) to it (the marked message is called a taint source). It is

important to note that if we add tags to all the variables in the

system, it can better track the data, but the memory overhead

will become a concern. We observe that an SMS message is

generally stored in a character or byte array; therefore, we only

need to add tags in character and byte arrays. In addition, we

add one tag for each array to reduce the memory overhead.

Fig. 1.

The taint tags are defined and applied in the Android native

layer; this is transparent to the application and Android

framework.

D. Propagate taint tags

 Ensuring that the taint tags cannot be removed during the

internal processing of the system is a challenge. Because the

SMS message is saved in an array that is created in the heap,

the taint tag will not be removed during general operations. e.g.,

function calls. However, in the processing of multiple cases, the

Android system can lose a tag carried by an array. These cases

include (1) IPC, (2) string operations, (3) single element

processing in an array, and (4) the secondary storage of the data.

E. Enforce security policies

To prevent the SMS authorization code from being stolen,

we enforce the corresponding policies at the endpoints where

the code could be sent out (these endpoints are called taint

sinks). Our initial study of the malware samples shows that a

stolen authorization code can be sent out through SMS

messages or the network interface (Section III-B). For the first

case, we modify the SMS manager to detect whether an

authorization code is being sent out. Specifically, when an app

sends an SMS message, we extract the tag of the data and

enforce the security rules. For instance, we could allow or

prevent the sending, warn the user, record the target address,

etc. For the second case, there are different ways in the Android

application layer to send out the data through the network

interface. However, all of these ways will eventually call the

native layer method through Posix. Therefore, we can extract

the taint tag of the data and enforce similar security policies at

this endpoint.

4. Implementation

 We have implemented a prototype of Code Tracker. Our

system consists of three components: authorization code

identification module, taint tag propagation module, and

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

204

security policy enforcement module.

A. Authorization code identification

In the following, we will present how the taint tags are

defined and how the authorization code is identified. We also

present the way that we apply the taint tags to the authorization

code.

Fig. 2. Taint tag

1) The definition of a taint tag

In our system, each byte or character array contains a taint

tag, as defined in Figure 2. A taint tag is a 32-bit integer data,

and each bit has a specific meaning. We only define the meaning

of the lower three bits, and we leave the remaining bits for

future extension. If the data contain a taint tag, the

corresponding bit of the tag of the data will be set to 1;

otherwise, it will be set to 0. To apply taint tags to the SMS

authorization code, we define several different tags. We define

the t_n tag as 0x00000000, which represents no tag, and data

containing the t_n tag denotes that the data contain no taint tags

and thus are general data. We define the t_p tag as 0x00000001,

which represents the potential tag, and data containing the t_p

tag are data possibly containing an authorization code. We

define the t_d tag as 0x00000002, which represents the database

tag, and data containing the t_d tag are data that are fetched

from the SMS database. We define the t_a tag as 0x00000004,

which represents the authorization code tag, and data containing

the t_a tag are data that contain an authorization code. Note that

it is possible for data to contain more than one tag. For instance,

some data might contain the t_d and t_a tags (t_a|d for short),

which denotes that the data are fetched from the SMS database

and contain an authorization code.

2) The storage of the taint tag

The purpose of our system is to protect SMS authorization

codes. Notice that an SMS authorization code is stored in a

string or a character/byte array; therefore, we only need to add

a taint tag to the character and byte arrays. To save memory,

there is no need to store tags for other types of data. To this end,

we modify the method of the Array class in Android. Because

the taint tag is 32-bit (i.e., 4 bytes) integer data, the memory

space occupied by an Array object will increase by 4 bytes.

Thus, we modify the Compute ArraySize() method of the Array

class.

We store the taint tag at the end of an array. Note that the

content of an Array object is stored in a variable array, called

elements_. To get the taint tag, the tag’s offset in the array must

be calculated. We define a static method to calculate the actual

memory address of the taint tag; this is easy to do with the

array’s starting address, the type of the array content and the

length of the array as parameters. We could not access the taint

tag using the array’s subscript, and the taint tag is transparent to

the app.

3) The operations of the taint tag

In the native layer, we define operations to add or get tags for

different types of data objects. These types include byte array,

character array, and string. Then, we register these methods as

internal methods in the virtual machine. We only define the

operations to add or get the taint tags, not operations to delete

or update the tags. This is to prevent the app from abusing these

operations to remove the tag. We have internal ways that cannot

be observed by apps to update or remove the tags.

4) Identifying authorization codes before SMS broadcasting

We leverage the source address of the SMS message to

determine whether the message possibly contains an

authorization code. If it might, we mark the message with a t_p

tag, which represents a potential tag. To this end, we need to

collect the phone numbers that send out SMS authorization

codes. We observe that such phone numbers are very different

in different countries and regions. For example, in China, the

phone numbers that send SMS authorization codes usually start

with 95 or 106 or are special numbers. Thus, we maintain a list

of source addresses of SMS authorization codes, which

currently includes, for example, 106∗, 95???, 12306, 10086,

10000, and 10010. Among the list, ‘106∗’ stands for phone

numbers starting with 106, and the length of such numbers is

not fixed but is no longer than 20 bits.

5) Identifying authorization codes after getting from the sms

database

When getting an SMS message from the SMS database,

Android will return a Cursor object using the query() method,

and then, it gets the message content with the getString()

method of the Cursor object. After getting the message content,

we will add a t_d tag (i.e., 0x00000002) to the string of the

message, which represents that the string is fetched from the

SMS database. Then, we determine whether the string contains

an authorization code by search- in the content. Specifically, we

search for ‘‘authorization’’ or ‘‘password’’ key words. If either

key word is found, we con- duct a subsequent search; if the

string contains four or more digits or a sub-string of four or

more digits or English characters, then we think that the string

contains an authorization code and add a t_a tag (i.e.,

0x00000004) to the message data. As a result, when an SMS

message is fetched from the SMS database, the general message

will carry a tag as t_d or t_d|p. It is possible for a message from

the SMS database to contain a t_p tag; as for the SMS database,

all the records in the database share the same tag set that is

stored in the extra extended attribute of the database file. If the

SMS database contains one record with the potential tag, then

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

205

all the records fetched from the database will carry such a tag.

B. Taint tag propagation

In the following, we will illustrate how the taint tags are

propagated in the system. In Android, array objects are stored

in the heap. In addition, the taint tags of the array object might

be lost when the object is copied, moved or saved into a file. In

our system, we made changes to the string methods, compiler,

Parcel class for inter-process communication, and methods

related to file operations to propagate the taint tag.

1) Modification to the string methods

In Java, the String class contains a private array that contains

the actual data. Assigning elements from an old array to a new

target array is usually done by the System_array copy

TUnchecked() method in the native layer.

2) Instrumentation to the compiler

In Android, many apps encode the data in text messages

before they send it through the Internet, similar to the URL

coding process. The encoding operations might modify a single

array element of the source array and copy it to a new array,

which can lead to a loss of the taint tag. There- fore, we need to

instrument the compiler of the ART virtual machine. In

particular, we first append a new field (i.e., tag_container) to the

Thread class to store the taint tag carried with the thread; then,

we modify the process of array assignment. When this process

copies an element of the source array to the target array, we

extract the taint tag from the source array and save it into the

current thread’s tag_container field. Later, we get the taint tag

from the tag_container field of the current thread and add it to

the target array. Array access operations will be converted into

AGET and APUT operations in the dex byte code and

eventually translated into the corresponding machine code by

the compiler. To maintain the taint tag, we instrument the

compiler for byte-and character-related AGET and APUT

operations. We take the byte-related operations.

When the system takes out an element from a byte array with

an AGET-BYTE operation, it gets the taint tag of the source

array and the taint tag from the tag container field of the current

thread. Then, we get the result of the bitwise OR computation

for these two tags. Finally, we store the result as a new tag to

the tag_container field of the current thread. On the other hand,

when the system assigns an element to a byte array with an

APUT-BYTE operation, we first get the taint tag from the

tag_container field of the current thread and the taint tag of the

target array. The original compiler of the sys- tem produces six

lines of assembly code for AGET-BYTE, i.e., lines 01-03 and

12-14. First, it loads the array length to the r3 register (line 01);

then, it stores the array subscript into memory(lines02-

03).Before loading the array element to the r5 register (line 14),

it judges if the array is out of boundary (line 12); if so, it jumps

to an exception handling (line 13).

To maintain the taint tag, we instrument the compiler to add

8 instructions (lines 04-11 marked by *). Specifically, it first

calculates the memory location of the taint tag of the array (lines

04-07) and loads the tag to the r1 register (line 08); then, it loads

the taint tag saved in the current thread to the r12 register (line

09) and calculates the new tag by a bitwise OR operation for

these two tags (line 10). Finally, it saves the new tag to the

current thread for later use in APUT-BYTE (line 11).

The original compiler of the sys- tem produces four lines of

assembly code for APUT-BYTE, i.e., lines 11-14. First, it loads

the array length to the r2 register (line 11), and then, it judges if

the array is out of boundary (line 12). If so, it jumps to an

exception handling (line 13); otherwise, it stores the value in r5

into the target array (line 14). To maintain the taint tag, we

instrument the compiler to add 10 instructions (lines 01-10

marked by *). Specifically, it first loads the taint tag of the

current thread to the r2 register (line 01). Then, it calculates the

memory location of the taint tag of the array (lines 02-07) and

loads thetagtother1 register(line08). Finally, it calculates the

new tag with a bitwise OR operation for these two tags (line 09)

and saves the new tag to the target array (line 10).

3) File operations

 When an SMS message is stored into the SMS database file,

the taint tag carried by the text message will be lost. In Android,

because the file operations are performed by calling the native

layer methods through the Posix class, which is in the

framework layer, we modify the operations associated with the

Posix class for this purpose. Specifically, when a byte array is

stored in a file, we first extract the taint tag of the array, and

then, we add it to the extra extended attribute of the target file.

Later, when we read the data from a file, we first get the taint

tag from the file’s extra extended attribute and then add it to the

corresponding byte array.

C. Security policy enforcement

The malicious apps could forward the stolen SMS

authorization code through SMS Manager or network interface

(taint sinks). Therefore, to catch such behaviors, we need to

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

206

modify the corresponding interfaces in Android’s framework

layer and apply corresponding security policies. When it

forwards the message through the SMS Manager, we extract the

tag of the data to be sent. When it forwards the data through the

network interface, it could be in several ways, e.g., by email,

with HTTP request, and with TCP/UDP sockets. However, in

any way, the network data will eventually be submitted to the

system call of the kernel, which is performed through the Posix

class. Therefore, we could detect and protect the SMS

authorization data by monitoring the network-related

operations in the Posix class.

1) Security policies

If we get a taint tag from a byte or character array, we may

possiblygetseveralvalues.Amongthesevalues,0x00000000 (i.e.,

t_n) represents that the data do not contain any taint tags;

0x00000001 (i.e., t_p) represents that the data potentially

contain an authorization code and that the data are directly

obtained through SMS broadcasting; 0x00000002 (i.e., t_d) and

0x00000003 (i.e., t_d|p) represent that the data are fetched from

the SMS database; and 0x000000007 (i.e., t_a|d|p) represents

that the data are fetched from the SMS database and contain an

authorization code. When the value is 0x00000001 or

0x00000007, we manipulate the data according to our pre-

defined rules (e.g., prohibit sending, warn the user, or send a

bogus value). It is important to note that if an app sends out data

with a tag of 0x00000001 (i.e., t_p), we think that it is a

dangerous operation. This is because the data are directly

obtained through SMS broad- casting, and then, the app is

attempting to send it out. This is a malicious action, as a benign

app always fetches an SMS message from the SMS database

and then sends it out.

5. Evaluation

In this section, we evaluate the effectiveness as well as the

performance overhead of our prototype system.

A. Effectiveness

 We ran our prototype to track and protect the SMS

authorization code on an LG Nexus 5 smart phone. To evaluate

the effectiveness of our system, we ran each sample every time

and sent real authorization code messages through some

popular shopping and banking websites to the smart phone. The

prototype printed log information about the authorization

codes. With this log information, we then retrieved the

evaluation results. The evaluation results show that among the

1,218 malicious samples, 885 of them obtained the messages,

and the remaining 333 samples failed to obtain them. Of the 885

samples that obtained messages, 429 of them obtained

messages through SMS broadcasting, 120 of them obtained

messages by reading the SMS database, and 336 of them

obtained messages both through the SMS broadcasting and by

reading the SMS database. Concerning subsequent actions, in

the 885 samples that obtained messages, 312 of them did not

forward the messages, 152 of them forwarded the messages,

although we did not get any taint tags for the data, and 421 of

them forwarded the messages, but we did obtain the

authorization code tag. Among the 421 samples that forwarded

messages with taint tags, 212 of them transmitted the data

through SMS Manager, 108 of them transmitted the data

through the network interface, and 101 of them transmitted the

data through both the SmsManager and the network interface.

The distribution map of the 1,218 SMS-stealing malware

samples.

Among the 333 samples that failed to retrieve SMS

messages, we found that the main reason for their failure was

the expiration of their software license or software errors. For

the 312 samples that did not forward the messages after

obtaining them, we found that the system did not print any log

information about SMS forwarding. We believe that this is

reasonable because these samples may need certain conditions

to be satisfied to trigger the behavior. How to automatically

trigger this malicious behavior remains an ongoing research

problem. Among the 152 samples that forwarded messages but

where we did not get any taint tags, we checked the log

information and found that these samples did not forward the

messages successfully. The main reasons for this are that these

samples failed to connect to a remote server before sending the

authorization code data, the mailbox’s password had been

changed when sending through email, or the license expired. In

summary, our system effectively captured the taint tags for the

421 samples that actually forwarded the SMS authorization

code and blocked such attempts. In the log information

produced by the 1,218 samples, we also collected 1,311 target

IP addresses and 294 target phone numbers for the stolen

authorization codes. We found that the top three target

addresses are located in mainland China, USA, and Hong Kong,

and 87.66% (1,407/1,605) of the target addresses are located in

mainland China. The distribution map of target addresses for

SMS-stealing samples is shown in Figure 7. We will release the

addresses that we collected to the community to improve the

detection of such malware.

B. Performance overhead

To measure the performance overhead introduced by Code

Tracker, we have performed several micro benchmarks, i.e., a

compiler micro benchmark, a Java micro benchmark, and an

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

207

IPC micro benchmark. The evaluation is conducted on an LG

Nexus 5 phone with our system.

1) Compiler microbenchmark

We measure the size of the oat files and the total compilation

time. For the compiler micro benchmark, we select the ten most

popular apps in Google play as our evaluation datasets. The ten

apps are Free VPN, Google Translate, Youtube, Instagram,

Lantern, Taobao, Twitter, Alipay, Google Game, and Tumblr.

We com- pile each app every time with the original compiler

and our instrumented compiler and record the size of the

produced at file and the time of compilation. We conduct the

benchmarks ten times for each app and calculate the average.

Table 1 shows the evaluation results of the compiler

microbench- mark. On average, Code Tracker introduces an

approximate 0.07% overhead with respect to the size of oat files

and an approximate 1.79% overhead with respect to the

compilation time. Compared to TaintART [9], Code Tracker

has a better performance as TaintART incurs about 19.9%

overhead with respect to the compilation time.

 Java microbenchmark: Because the Java micro

benchmark can accurately reflect the runtime overhead

introduced by Code Tracker. The maximum overhead

introduced by Code Tracker is 6.92% (String score),

and the minimum loss is 0.01% (Sieve score). The

average performance overhead incurred by Code

Tracker with Caffeine Mark is 1.33%, which is much

better than TaintART [9] that introduces about 14%.

Our approach is thus a lightweight solution.

2) IPC microbenchmark

To perform the evaluation of the IPC micro benchmark on

Code Tracker, we have developed a pair of client/server apps

that communicate through Binder in Android. Specifically, the

client records the time (t_0) before sending a message to the

server. The server will also send a message back to the client

after receiving the client’s message. Then, the client records the

time (t_1) at which it receives a message from the server.

Therefore, `t1-t0' represents the elapsed time. We repeat the

test ten thousand times and record the execution times. We also

calculate the memory usage or the client and server apps during

their communication.

Table 2 shows the test results. The overhead of the IPC

execution time is 0.90%, and the memory usage overheads for

the client and server are 0.66% and 1.17%, respectively. In

contrast, the overheads introduced by Taint ART [9] are about

4.35% for the IPC execution time and 4% for the memory

usage, which are both higher than Code Tracker.

6. Discussion

In this section, we discuss some possible limitations of Code

Tracker and potential future work.

A. Future work

First, Code Tracker is designed for the protection of SMS

authorization codes, not for the protection of general text

messages. However, in our decompilation process, we found

that many malware apps steal general messages. Therefore, in

the future, we can easily extend Code Tracker into a pro- to type

system to protect all text messages by applying the taint tags to

SMS messages and changing the security policies accordingly.

Second, Code Tracker requires changes to the underlying

framework; it cannot be transparently supported as a user-level

solution. We using Greedy algorithm to protect the information

from the third parties.

7. Related work

A. Protection of SMS messages

A variety of systems have been designed to prevent SMS

messages from being leaked in smart phones. For example,

Secure SMS [20] and other similar systems[21]–[23]leverage

cryptographic algorithms to encrypt the SMS messages for

confidentiality, integrity and authentication services, which is a

different goal compared to Code Tracker. Secure SMS [7]

attempts to protect SMS messages by adjusting the app’s

receiving sequence of text messages in the system so that the

default SMS app can get the text message first. Then, it blocks

the SMS broadcasting to prevent malicious apps from getting

the message. However, Secure SMS only works in Android

versions prior to 4.4. Other systems [24]–[27] have also been

proposed to prevent phishing messages. Specifically, these

systems search the content of SMS messages to find URLs that

might link to malicious apps for installation and then block

users’ dangerous operations. In contrast to these apps, Code

Tracker aims to provide protection for authorization codes in

SMS messages.

B. Confinement of smartphone apps

A number of systems have been implemented to limit apps’

access to sensitive data. For example, Kirin [39] confines apps

by preventing third-party apps from accessing private data.

FlaskDroid [40] achieves this goal by hooking Android system

services. AppCage [41] leverages two complimentary user-

level sandboxes to interpose and regulate an app’s access to

sensitive APIs. To prevent potential privacy leakage, Aurasium

[42], AppGuard [43], TISSA [6], and RetroSkeleton [44] have

been proposed to enforce finegrained access control on

sensitive data. All these systems may be able to be leveraged to

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

208

provide protection for sensitive data (including SMS

authorization codes) on legacy runtimes (i.e., Dalvik) in

Android, but not on the ART runtime. In contrast, Code Tracker

works well on Android’s ART runtime and can provide

protection as well as tracking for authorization codes in SMS

messages.

8. Conclusion

In this paper, we design a dynamic lightweight approach for

tracking and protecting authorization codes in Android, called

Code Tracker. Specifically, we leverage the taint tracking

technique and mark authorization codes with taint tags at the

origin of the incoming SMS messages and propagate the tags

through the system. Then, we apply security policies at the

endpoints where the tainted authorization code is being sent out.

The evaluation results on real malware samples demonstrate the

effectiveness of our system, and the introduced performance

overhead is low (< 2% on average).

References

[1] Code Tracker: A light Weight Approach to protect the message SMS
2018.

[2] We Steal SMS: An Insight into Android. KorBanker Operations.

Accessed: Dec. 26, 2017. [Online]. Available: https://www.fireeye.com/
blog/threat-research/2014/09/we-steal-sms-an-insight-into-android-

korbanker-operations.html

[3] SophosLabs Report Explores Mobile Security Threat Trends, Reveals
Explosive Growth in Android Malware. Accessed: Dec. 26, 2017.

https://news.sophos.com/en-us/2014/02/24/sophoslabs-report- explores-

mobile-security-threat-trends-reveals-explosive-growth-in- android-
malware/

[4] Special Report on Android Malware in 2016.

Availablehttp://zt.360.cn/1101061855.php?dtid=1101061451&
did=490301065

[5] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characterization

and evolution,’’ in Proc. IEEE Symp. Secure. rivacy, May 2012, pp. 95–
109.

[6] Android 4.4.

https://developer.android.google.cn/about/versions/kitkat.html
[7] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, ‘‘Taming information-

stealing smart phone applications (on Android),’’ in Proc. 4th Int. Conf.

Trust Trustworthy Compute., 2011, pp. 93–107.
[8] D. Kim and J. Ryou, “Secure SMS: prevention of SMS interception on

Android platform,’’ in Proc. 8th Int. Conf. Ubiquitous Inf. Manage.

Commun., 2014, p. 32.
[9] W. Enck et al., ‘‘TaintDroid: An information-flow tracking system for real

time privacy monitoring on smart phones,’’ ACM Trans. Compute. Syst.,

vol. 32, no. 2, p. 5, Jun. 2014.
[10] M. Sun, T. Wei, and J. C. S. Lui, ‘‘TaintART: A practical multi-level

information-flow tracking system for Android runtime,’’ in Proc. ACM

SIGSAC Conf. Compute. Commun. Secure., 2016, pp. 331–342.
[11] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S.

Weisger- ber, ‘‘ARTist: The Android runtime instrumentation and

security toolkit,’’ in Proc. IEEE Eur. Symp. Secur. Privacy, Apr. 2017,
pp. 481–495.

[12] GoogleIO 2014. Accessed: Dec. 26, 2017. [Online]. Available:
https://www.google.com/events/io/io14videos/b750c8da-aebe-e311-

b297-00155d5066d7

[13] MazarBOT.
https://www.tripwire.com/state-of-security/featured/mazarbot-android-

malware-distributed-via-sms-spoofing-campaign/

[14] Bankbot. Available: https:// github.com/bemre/bankbot-mazain
[15] VirusTotal. Available: https:// www.virustotal.com/

[16] VirusShare. Available: https:// virusshare.com/

[17] Contagio Mobile. https://contagiominidump.blogspot.com/
[18] Pendragon Software Corporation. CaffeineMark 3.0.

http://www.benchmarkhq.ru/cm30/

[19] G. S. Babil, O. Mehani, R. Boreli, and M.-A. Kaafar, ‘‘On the
effectiveness of dynamic taint analysis for protecting against private

information leaks on Android-based devices,’’ in Proc. Int. Conf. Secure.

Cryptogr., 2015, pp. 1–8.
[20] AntiTaintDroid. https://github.com/gsbabil/AntiTaintDroid

[21] N. Saxena and N. S. Chaudhari, ‘‘SecureSMS: A secure SMS protocol for
vas another applications” J. Syst. Softw., vol.90, pp.138–150, Apr.2014.

[22] A. De Santis, A. Castiglione, G. Cattaneo, M. Cembalo, F. Petagna, and

U. F. Petrillo, ‘‘An extensible framework for efficient secure SMS,’’ in
Proc. Int. Conf. Complex, Intell. Softw. Intensive Syst., 2010, pp. 843–

850.

[23] H. Harb, H. Farahat, and M. Ezz, ‘‘SecureSMSPay: Secure SMS mobile
payment model,’’ in Proc. Int. Conf. Anti-Counterfeiting, Secur.

Identificat., 2008, pp. 11–17.

[24] G. C. C. F. Pereira et al., ‘‘SMScrypto: A lightweight cryptographic

framework for secure SMS transmission,’’ J. Syst. Softw., vol. 86, no. 3,

pp. 698–706, 2013.

[25] LinkScanning. Accessed: Dec. 26, 2017. [Online]. Available: https://play.
google.com/store/apps/details?id=com.directionsoft.linkscan&feature

[26] S-GUARD.

https://play.google.com/store/apps/details?id=kr.co.seworks.sguard
[27] AntiSmishing.

https://play.google.com/store/apps/details?id=com.nprotect.antismishing

[28] T-GUARD.
http://

www.tstore.co.kr/userpoc/game/viewProduct.omp?t_top=DP000504&

dpCatNo=DP04003&insDpCatNo=DP04003&insProdId=0000329718&
prodGrdCd=PD004401&stPrePageNm=DP04003&stActionPositionNm

= 06&stDisplayOrder=1

[29] S. Arzt et al., ‘‘Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps,’’ in Proc. 35th ACM

SIGPLAN Conf. Program. Lang. Design Implement., 2014, pp. 259–269.

[30] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, ‘‘Analyzing inter-

application communication in Android,’’ in Proc. Int. Conf. Mobile Syst.,

Appl., Services, 2011, pp. 239–252.

[31] F. Wei, S. Roy, X. Ou, and Robby, ‘‘Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of

Android apps,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,

2014, pp. 1329–1341.
[32] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, ‘‘DroidForce: Enforcing

complex, data-centric, system-wide policies in Android,’’ in Proc. 9th Int.

Conf. Availability, Rel. Secur., 2014, pp. 40–49.
[33] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, ‘‘Chex: Statically vetting

Android apps for component hijacking vulnerabilities,’’ in Proc. ACM

Conf. Comput. Commun. Secur., 2012, pp. 229–240.
[34] Y. Zhou, K. Singh,andX.Jiang,‘‘Owner-centricprotectionofunstructured

data on smartphones,’’ in Proc. 7th Int. Conf. Trust Trustworthy Comput.,

2014, pp. 55–73.
[35] C. Qian, X. Luo, Y. Shao, and A. T. Chan, ‘‘On tracking information

flows through JNI in Android applications,’’ in Proc. 44th Annu.

IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2014, pp. 180–

191.

[36] DroidBox. https://github.com/pjlantz/droidbox

[37] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, ‘‘Riskranker:
Scalable and accurate zero-day Android malware detection,’’ in Proc. Int.

Conf. Mobile Syst., Appl., Services, 2012, pp. 281–294.
[38] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, ‘‘Hey, you, get off of my

market: Detecting malicious apps in official and alternative Android

markets,’’ in Proc. Annu. Netw. Distrib. Syst. Secur. Symp., 2014, pp.
50–52.

[39] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, ‘‘Malton: Towards on-

device non-invasive mobile malware analysis for art,’’ in Proc. USENIX
Secur. Symp., 2017, pp. 1–19.

[40] W. Enck, M. Ongtang, and P. McDaniel, ‘‘On lightweight mobile phone

application certification,’’ in Proc. 16th ACM Conf. Comput. Commun.
Secur., 2009, pp. 235–245.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-12, December-2019

www.ijresm.com | ISSN (Online): 2581-5792

209

[41] S. Bugiel, S. Heuser, and A. R. Sadeghi, ‘‘Flexible and fine-grained
mandatory access control on Android for diverse security and privacy

policies,’’ in Proc. USENIX Secur. Symp., 2013, pp. 131–146.

[42] Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang, ‘‘Hybrid user-level
sandboxing of third-party Android apps,’’ in Proc. ACM Symp. Inf.,

Comput. Commun. Secur., 2015, pp. 19–30.

[43] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical policy
enforcement for Android applications,” in Proc. USENIX Secur. Symp.,

2012, pp. 1–14.

[44] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. Styp-Rekowsky,
“Appguard–enforcing user requirements on Android apps,” in Proc. Int.

Conf. Tools Algorithms Construction Anal. Syst., 2013, pp. 543–548.

[45] B. Davis and H. Chen, ‘‘Retro skeleton: Retrofitting Android apps,’’ in
Proc. Int. Conf. Mobile Syst., Appl., Services, 2013, pp. 181–192.

