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Abstract: In personal identification and online banking 

authorization codes play an important role require users to 

provide a code for authorization purposes. However, 

authorization codes in application can be stolen and forwarded by 

attackers, which introduces serious security concerns. In this 

paper, we propose Code Tracker, a hybrid approach to track and 

protect authorization codes. When the authorization code is sent 

out via either SMS messages or network connections (taint sinks), 

we extract the taint tag of the data and enforce standard security 

policies to prevent the code from being hacked and attacked from 

unauthorized access. SMS-stealing Android malware samples to 

evaluate the system. In this paper we used cryptographic 

algorithm to protect from SMS stealing from unauthorized access. 

The results show that Code Tracker a lightweight and hybrid 

approach can effectively track and protect SMS authorization 

codes with a high performance. 

 
Keywords: Tags, short message service (SMS) authorization  

1. Introduction 

Smart phones are widely used in our daily life. Increasingly 

more users leverage smart phones for online transaction, bank 

transfers and other operations. Simultaneously increasingly 

more websites and applications (apps for short). leverage codes 

delivered via short message service (SMS) messages to 

authorize users. We call this type of code an authorization code 

in this paper. For instance, an SMS authorization code can be 

required when users log into a banking application or reset their 

passwords. Leveraging SMS codes for authorization is 

convenient; however, it may present security concerns. If the 

code is stolen by attackers, it can cause financial losses to users. 

On the other hand, SMS-stealing malware is emerging [1], 

[2]. A research report from the Qihoo 360 companies [3] 

revealed that 6:1% of mobile malware is stealing information. 

Before Android version 4.4 (KitKat) [5], malicious apps could 

intercept SMS messages to retrieve authorization codes and 

then block the SMS broadcasting stealthily without informing 

users. However, starting with Android version 4.4, the SMS 

mechanism has been changed. Malicious apps are unable to 

block SMS broadcasting, and the system SMS app will get the 

SMS messages. However, malicious apps can still steal SMS 

messages by registering a broadcast receiver that listens to 

certain system events or requesting the READ_SMS permission 

to retrieve SMS messages from the database. Noted that a  

 

number of systems have been proposed to protect SMS 

authorization codes. For instance, TISSA [6] can provide null 

or bogus values instead of real data, which avoids data leakage 

(including SMS authorization codes). However, TISSA is 

currently implemented on legacy Android's Dalvik runtime and 

not the newly designed ART runtime. Secure SMS [7] is 

another system used to protect SMS messages by changing the 

Android framework. In particular, when an SMS message 

arrives, Secure SMS searches the message text. If a predefined 

keyword is found in the message, it adjusts the apps' receiving 

sequence of text message sin the system so that the default SMS 

app can get the text message first. Then, it stops the SMS 

broadcasting to prevent malicious apps from getting the 

message. This system works but may cause compatibility issues 

in some benign apps that rely on received text messages. In 

addition, starting with Android version 4.4, the SMS 

broadcasting mechanism has been changed, and the new 

unordered broadcasting cannot be blocked. From another 

perspective, because SMS authorization codes are a type of 

sensitive data in smart phones, they can be protected with the 

well-known taint tracking technique. Taint Droid [8] is such a 

system for real-time privacy monitoring that can be used to 

protect authorization codes. However, Taint Droid is 

implemented on the Dalvik virtual machine under Android 

version 4.4 and has not been applicable for the newly 

introduced ART runtime since Android 4.4. Taint ART [9] 

implements a practical multi-level information-_own tracking 

system on Android's ART virtual machine and can be used to 

track and protect private data. However, its extensibility is an 

issue because the bit length of a register (32 bits) for taint 

indication is limited. ARTist [10] is a system in Android that 

tracks private data by incrementing apps using a customized 

dex2oat tool. ART is an excellent system; however, it only 

works for intra-application tracking and lacks the inter-

application tracking that is necessary for SMS authorization 

code protection. In this paper, we propose Code Tracker, a 

lightweight approach to track and protect SMS authorization 

codes in Android SMS messages. Specially, Code Tracker adds 

taint tags to mark the authorization code at the very beginning 

of the incoming SMS messages, and it modifies the related 

array structure, array operations, string operations, IPC (Inter-

Process Communication) mechanism, and _le operations for the 
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secondary storage of SMS authorization codes to ensure that the 

tags cannot be removed. Finally, when the authorization code is 

sent out (via either SMS or the network), Code Tracker extracts 

the tag of the data and checks with predefined security policies. 

By doing so, it prevents authorization codes from being stolen 

by attackers. We have developed a prototype of Code Tracker 

on an Android system with the ART runtime, and we 

collected1; 218 state-of-the-art SMS-stealing Android malware 

samples to evaluate the system. The evaluation results show 

that Code Tracker can track and protect SMS authorization 

codes from being stolen. We further analyzed the remote server 

addresses where the stolen authorization codes are forwarded 

to, and we found that 87:66% of them are located in 

China.1This may be due to the popularity of third-party app 

stores in China with less regulation. The evaluation of the 

performance overhead shows that Code Tracker incurs a large 

overhead. In summary, this paper makes the following 

contributions: 

 We propose a lightweight approach with data-_own 

tracking to protect SMS authorization codes in 

Android smart phones, called Code Tracker. 

 We have implemented a prototype of Code Tracker in 

the Android ART runtime. Code Tracker adds taint 

tags to the SMS authorization code at the very 

beginning of the incoming SMS messages and ensures 

that the tags cannot be removed when propagating 

through the system.  

 When the authorization code is sent out, Code Tracker 

protects the code by enforcing predefined security 

policies. 

 We have evaluated our system with a collection of 

malware samples. The evaluation results demonstrate 

the effectiveness and low performance overhead of our 

system. The remainder of the paper is structured as 

follows.  

 We proposed the cryptographic algorithm to protect 

the SMS stealing from third parties it’s also take less 

time to perform 

The remainder of the paper is structured as follows. 

We first introduce the necessary background information in 

Section II. We illustrate the design, implementation, and 

evaluation of our system in Section III, Section IV, and Section 

V, respectively. We discuss the limitations and potential 

improvements to our system in Section VI, and the related work 

is presented in Section VII. Finally, we conclude the paper in 

Section VIII. 

2. Background 

In this section, we will briefly introduce the key concepts of 

the Android SMS system, as well as the Android runtime 

environment, to provide necessary background information for 

our proposed approach. 

A. Android SMS system 

In Android, when receiving a text message, the system sends 

the message from the RLI (Radio Layer Interface) layer to the 

framework layer. The framework layer then packs the text 

message into an SMS PDU and sends a broadcast indicating the 

receiving of an SMS message. All apps with the 

RECEIVE_SMS permission will receive the broadcast along 

with the SMS message if they have registered the 

SMS_RECEIVED_ACTION action. Before Android version 

4.4, SMS broadcasting was ordered, and apps with higher 

priority could access SMS messages first and then discard the 

messages, which make apps with low priority unreachable to 

the SMS messages. This mechanism has been abused by 

malware to intercept SMS messages [4]. In addition, if a 

malicious app has the permissions (READ_SMS or 

WRITE_SMS) to directly operate on the SMS data base, it 

could monitor the database continuously. Once an SMS 

authorization 

Code is received, it could steal the code and then delete it. 

Starting with Android version 4.4, the SMS system has been 

changed. When the system receives a text message, the 

framework layer encapsulates the text message into an SMS 

PDU and sends it with two types of broadcasting. One type is 

ordered broadcasting, i.e., SMS_DELIVER_ACTION, in 

which only the default SMS app can receive it. In other words, 

only the default SMS app has the permission to delete and insert 

the text messages to the SMS database. The other type is 

unordered broadcasting, i.e., SMS_RECEIVED_ACTION, in 

which the broadcasting cannot be interrupted, and all apps can 

receive SMS messages by registering the broadcasting. Due to 

this difference, malicious apps cannot intercept and delete the 

received SMS messages, but they still can steal and forward the 

SMS messages to remote servers. 

B. Android runtime environment 

 On an Android system, each app is running inside a 

separated runtime environment and has its own unique running 

environment. This runtime environment was called the Dalvik 

runtime in old Android versions and is called the ART runtime 

in Android versions 5.0 and above. Dalvik is a register based 

virtual machine that will translate a dex _le into an odex _le 

with the dexopt command and then execute it. To further 

improve the performance of Android, Google introduced a new 

Android runtime, i.e., ART (Android Runtime) [11], which 

adopts the AOT (ahead of time) mechanism. When an Android 

app is being installed, the ART virtual machine leverages the 

dex2oat tool to transform the app's dex _le into an oat _le, which 

actually compiles the byte code into native machine code. 

When the app is running, the machine code will be directly 

executed, which greatly improves the performance. The 

transition from the Dalvik to ART runtime leads to several 

challenges to the taint tracking system. For instance, Taint 

Droid [8] is implemented in Dalvik, which stores the taint tags 

by applying extra space adjacent to the variable sin the stack of 
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the Dalvik virtual machine. In the ART runtime, some of the 

parameters are stored directly in registers. To support taint 

tracking in the ART runtime, the method of n storing taint tags 

should be changed accordingly. This is only one challenge, and 

we will illustrate how to implement taint tracking on the ART 

runtime in Section IV. 

C. Initial study of the SMS-stealing malware samples 

1) Permission analysis 

To systematically understand the malicious behaviors of 

SMS-stealing malware, we have collected 1; 218 malicious 

samples from three websites, i.e., Virus Total [14], Virus Share 

[15], and Contagion Mobile [16]. We found that most samples 

request the permissions related to SMS and the network. 

Among these 1; 218 collected malware samples,1; 015 of them 

(83:33%) request RECEIVE_SMS permission,799 (65:60%) of 

them request READ_SMS permission,1; 020 samples (83:74%) 

request SEND_SMS permission, and1; 005 samples (82:51%) 

request INTERNET permission. 

2) Two methods to obtain SMS authorization codes 

We then decompiled these samples to further understand the 

methods used to steal the SMS authorization code. We found 

that these samples usually leverage two different methods to 

steal SMS messages. One is through the SMS broadcast 

receiver, and the other is through the SMS database monitoring 

mechanism. Among the 1; 218 samples that we collected, 429 

of them steal messages through the SMS broadcast receiver, 

120 of them steal messages by monitoring the SMS database, 

and 336 of them steal messages using both mechanisms. 

 SMS broadcast receiver: As mentioned in Section II-

A, before Android version 4.4, a malicious app could 

obtain text messages ahead of other apps by setting its 

priority to a higher value and then it blocks the SMS 

broadcast. This could prevent other apps (the system 

SMS app for example) from receiving the SMS 

messages. In Android versions 4.4 and above, a 

malicious app can still receive text messages via 

registering a broadcast receiver, but it cannot block the 

message broadcast. 

 Monitoring SMS database: Malicious apps with 

READ_SMS permission are able to monitor the SMS 

database. When a new SMS message is received and 

inserted into the SMS database, the monitor will be 

informed. 

3) Two methods to send out SMS authorization codes 

 We further installed the samples on an LG Nexus 5 phone 

and captured. The results show that there are two main methods 

that the samples use to send out the stolen SMS messages: 

through SMS messages and through the network interface. 

 SMS forwarding: If a malicious app has the 

SEND_SMS permission, it is easy for the app to 

forward the stolen authorization code through another 

SMS message by invoking the well-defined system 

APIs, e.g., send Text Message(). 

 Network forwarding: If a malicious app has the 

INTERNET permission, it can forward the 

authorization code through the network interface. The 

possible channels include emails, HTTP requests, and 

direct TCP/UDP sockets. 

3. System design 

A. Threat model 

In this work, the SMS authorization code is the user's private 

data that need to be protected. Third-party apps installed on the 

system are not trusted either because they are malicious or 

vulnerable. These apps can steal SMS authorization codes in 

smart phones and forward the codes to a remote server. Similar 

to other works, trust the underlying Android framework and the 

operating system. While the physical security of the devices 

(including the smart phones and the SIM cards) is out of the 

scope of this work. 

B. Overall design 

The goal of our work is to track and protect authorization 

codes in SMS messages. To achieve this, there are several 

challenges that need to be addressed. First, we must determine 

whether a text message contains an authorization code and then 

mark it with the taint tag. Second, the SMS authorization code 

could be processed in many locations, e.g., it might be copied 

or passed to a new variable or be saved to the SMS database. 

The taint tags need to be reversed and propagated in these 

scenarios. Third, we need to determine the correct place to 

enforce pre- security policies to ensure that the SMS 

authorization code cannot be stolen. To overcome these 

challenges, we propose a lightweight approach to track and 

protect SMS authorization codes, called Code Tracker. The 

overall design of Code Tracker is shown in Figure 1. As marked 

in digital numbers in Figure 1, there are 15 possible steps in the 

processing of SMS authorization codes. These steps are 

described as follows: 1, Android receives an SMS message; 2-

3, according to the predefined rules ,the SMS message is 

marked as a potential SMS authorization code by adding a t_p 

tag; 4, an SMS message with the t_ptag is sent to the default 

system SMS app and the third part apps that register as an SMS 

broadcast receiver; 5,the system SMS app inserts the SMS 

content into the SMS database and adds the t_p tag as an extra 

extended attribute to the SMS database _le; 6, a third-party app 

fetches an SMS message from the SMS database, and the 

content of the message is marked with the t_p tag, which is 

obtained from the extra extended attribute of the SMS database 

_le; 7, a database taint tag, i.e., t_d, which represents that the 

data are read from the SMS database, is added to the SMS 

message;8-9, it determines whether the message contains an 

authorization code; if so, it adds a t_a tag to the SMS 

message;10, a third-party app obtains the SMS authorization 

coded at from the SMS database, which contains three taint tags 

,i.e., t_a, t_d, and t_p. These tags are denoted as t_a|d|p;11-12, 

the SMS messages are sent through the SMS interface or the 
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network interface; 13-15, it extracts the tags of the data to be 

sent out and then processes them according to the predefined 

security policies. 

C. Identify the SMS authorization code 

To identify an SMS authorization code and then apply the 

taint tag, our system has to determine whether an SMS message 

contains an authorization code. First, we need to decide when 

to identify the authorization code. Note that the Android SMS 

system mainly obtains SMS messages via SMS broadcasting or 

by reading from the SMS database. Therefore, we only need to 

determine whether an SMS message contains an authorization 

code before the SMS broadcasting and after the message is 

fetched from the SMS database 

However, because the framework layer of Android will not 

have decoded the message content before the SMS 

broadcasting, it is difficult for us to recognize the authorization 

code by searching the content of the message. Therefore, we 

leverage the sender address of the SMS message to determine 

whether the message possibly contains an authorization code; if 

so, we mark it as a potential SMS authorization code. We 

maintain a list of sender addresses of SMS authorization codes, 

and we treat all the SMS messages that originate from these 

addresses as messages potentially containing SMS 

authorization codes. After the SMS message can be read from 

the SMS database, we search the content of the message to 

obtain the string pattern of the authorization code to determine 

whether the message contains an authorization code. After 

identifying an SMS message that contains an authorization code 

(or potentially contains such a code), we mark and track the 

message by adding a tag (or taint tag) to it (the marked message 

is called a taint source). It is important to note that if we add 

tags to all the variables in the system, it can better track the data, 

but the memory overhead will become a concern. We observe 

that an SMS message is generally stored in a character or byte 

array; therefore, we only need to add tags in character and byte 

arrays. In addition, we add one tag for each array to reduce the 

memory overhead. However, because the framework layer of 

Android will not have decoded the message content before the 

SMS broadcasting, it is difficult for us to recognize the 

authorization code by searching the content of the message. 

Therefore, we leverage the sender address of the SMS message 

to determine whether the message possibly contains an 

authorization code; if so, we mark it as a potential SMS 

authorization code. We maintain a list of sender addresses of 

SMS authorization codes, and we treat all the SMS messages 

that originate from these addresses as messages potentially 

containing SMS authorization codes. After the SMS message 

can be read from the SMS database, we search the content of 

the message to obtain the string pattern of the authorization 

code to determine whether the message contains an 

authorization code. After identifying an SMS message that 

contains an authorization code (or potentially contains such a 

code), we mark and track the message by adding a tag (or taint 

tag) to it (the marked message is called a taint source). It is 

important to note that if we add tags to all the variables in the 

system, it can better track the data, but the memory overhead 

will become a concern. We observe that an SMS message is 

generally stored in a character or byte array; therefore, we only 

need to add tags in character and byte arrays. In addition, we 

add one tag for each array to reduce the memory overhead. 

 

 
Fig. 1. 

 

The taint tags are defined and applied in the Android native 

layer; this is transparent to the application and Android 

framework. 

D. Propagate taint tags 

 Ensuring that the taint tags cannot be removed during the 

internal processing of the system is a challenge. Because the 

SMS message is saved in an array that is created in the heap, 

the taint tag will not be removed during general operations. e.g., 

function calls. However, in the processing of multiple cases, the 

Android system can lose a tag carried by an array. These cases 

include (1) IPC, (2) string operations, (3) single element 

processing in an array, and (4) the secondary storage of the data. 

E. Enforce security policies 

To prevent the SMS authorization code from being stolen, 

we enforce the corresponding policies at the endpoints where 

the code could be sent out (these endpoints are called taint 

sinks). Our initial study of the malware samples shows that a 

stolen authorization code can be sent out through SMS 

messages or the network interface (Section III-B). For the first 

case, we modify the SMS manager to detect whether an 

authorization code is being sent out. Specifically, when an app 

sends an SMS message, we extract the tag of the data and 

enforce the security rules. For instance, we could allow or 

prevent the sending, warn the user, record the target address, 

etc. For the second case, there are different ways in the Android 

application layer to send out the data through the network 

interface. However, all of these ways will eventually call the 

native layer method through Posix. Therefore, we can extract 

the taint tag of the data and enforce similar security policies at 

this endpoint.  

4. Implementation 

 We have implemented a prototype of Code Tracker. Our 

system consists of three components: authorization code 

identification module, taint tag propagation module, and 
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security policy enforcement module.  

A. Authorization code identification  

In the following, we will present how the taint tags are 

defined and how the authorization code is identified. We also 

present the way that we apply the taint tags to the authorization 

code. 

 

 
Fig. 2.  Taint tag 

 

1) The definition of a taint tag 

In our system, each byte or character array contains a taint 

tag, as defined in Figure 2. A taint tag is a 32-bit integer data, 

and each bit has a specific meaning. We only define the meaning 

of the lower three bits, and we leave the remaining bits for 

future extension. If the data contain a taint tag, the 

corresponding bit of the tag of the data will be set to 1; 

otherwise, it will be set to 0. To apply taint tags to the SMS 

authorization code, we define several different tags. We define 

the t_n tag as 0x00000000, which represents no tag, and data 

containing the t_n tag denotes that the data contain no taint tags 

and thus are general data. We define the t_p tag as 0x00000001, 

which represents the potential tag, and data containing the t_p 

tag are data possibly containing an authorization code. We 

define the t_d tag as 0x00000002, which represents the database 

tag, and data containing the t_d tag are data that are fetched 

from the SMS database. We define the t_a tag as 0x00000004, 

which represents the authorization code tag, and data containing 

the t_a tag are data that contain an authorization code. Note that 

it is possible for data to contain more than one tag. For instance, 

some data might contain the t_d and t_a tags (t_a|d for short), 

which denotes that the data are fetched from the SMS database 

and contain an authorization code. 

2) The storage of the taint tag 

The purpose of our system is to protect SMS authorization 

codes. Notice that an SMS authorization code is stored in a 

string or a character/byte array; therefore, we only need to add 

a taint tag to the character and byte arrays. To save memory, 

there is no need to store tags for other types of data. To this end, 

we modify the method of the Array class in Android. Because 

the taint tag is 32-bit (i.e., 4 bytes) integer data, the memory 

space occupied by an Array object will increase by 4 bytes. 

Thus, we modify the Compute ArraySize() method of the Array 

class. 

We store the taint tag at the end of an array. Note that the 

content of an Array object is stored in a variable array, called 

elements_. To get the taint tag, the tag’s offset in the array must 

be calculated. We define a static method to calculate the actual 

memory address of the taint tag; this is easy to do with the 

array’s starting address, the type of the array content and the 

length of the array as parameters. We could not access the taint 

tag using the array’s subscript, and the taint tag is transparent to 

the app. 

3) The operations of the taint tag 

In the native layer, we define operations to add or get tags for 

different types of data objects. These types include byte array, 

character array, and string. Then, we register these methods as 

internal methods in the virtual machine. We only define the 

operations to add or get the taint tags, not operations to delete 

or update the tags. This is to prevent the app from abusing these 

operations to remove the tag. We have internal ways that cannot 

be observed by apps to update or remove the tags. 

4) Identifying authorization codes before SMS broadcasting  

We leverage the source address of the SMS message to 

determine whether the message possibly contains an 

authorization code. If it might, we mark the message with a t_p 

tag, which represents a potential tag. To this end, we need to 

collect the phone numbers that send out SMS authorization 

codes. We observe that such phone numbers are very different 

in different countries and regions. For example, in China, the 

phone numbers that send SMS authorization codes usually start 

with 95 or 106 or are special numbers. Thus, we maintain a list 

of source addresses of SMS authorization codes, which 

currently includes, for example, 106∗, 95???, 12306, 10086, 

10000, and 10010. Among the list, ‘106∗’ stands for phone 

numbers starting with 106, and the length of such numbers is 

not fixed but is no longer than 20 bits.  

5) Identifying authorization codes after getting from the sms 

database  

When getting an SMS message from the SMS database, 

Android will return a Cursor object using the query() method, 

and then, it gets the message content with the getString() 

method of the Cursor object. After getting the message content, 

we will add a t_d tag (i.e., 0x00000002) to the string of the 

message, which represents that the string is fetched from the 

SMS database. Then, we determine whether the string contains 

an authorization code by search- in the content. Specifically, we 

search for ‘‘authorization’’ or ‘‘password’’ key words. If either 

key word is found, we con- duct a subsequent search; if the 

string contains four or more digits or a sub-string of four or 

more digits or English characters, then we think that the string 

contains an authorization code and add a t_a tag (i.e., 

0x00000004) to the message data. As a result, when an SMS 

message is fetched from the SMS database, the general message 

will carry a tag as t_d or t_d|p. It is possible for a message from 

the SMS database to contain a t_p tag; as for the SMS database, 

all the records in the database share the same tag set that is 

stored in the extra extended attribute of the database file. If the 

SMS database contains one record with the potential tag, then 
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all the records fetched from the database will carry such a tag. 

B. Taint tag propagation 

In the following, we will illustrate how the taint tags are 

propagated in the system. In Android, array objects are stored 

in the heap. In addition, the taint tags of the array object might 

be lost when the object is copied, moved or saved into a file. In 

our system, we made changes to the string methods, compiler, 

Parcel class for inter-process communication, and methods 

related to file operations to propagate the taint tag.  

1) Modification to the string methods 

In Java, the String class contains a private array that contains 

the actual data. Assigning elements from an old array to a new 

target array is usually done by the System_array copy 

TUnchecked() method in the native layer. 

2) Instrumentation to the compiler  

In Android, many apps encode the data in text messages 

before they send it through the Internet, similar to the URL 

coding process. The encoding operations might modify a single 

array element of the source array and copy it to a new array, 

which can lead to a loss of the taint tag. There- fore, we need to 

instrument the compiler of the ART virtual machine. In 

particular, we first append a new field (i.e., tag_container) to the 

Thread class to store the taint tag carried with the thread; then, 

we modify the process of array assignment. When this process 

copies an element of the source array to the target array, we 

extract the taint tag from the source array and save it into the 

current thread’s tag_container field. Later, we get the taint tag 

from the tag_container field of the current thread and add it to 

the target array. Array access operations will be converted into 

AGET and APUT operations in the dex byte code and 

eventually translated into the corresponding machine code by 

the compiler. To maintain the taint tag, we instrument the 

compiler for byte-and character-related AGET and APUT 

operations. We take the byte-related operations. 

When the system takes out an element from a byte array with 

an AGET-BYTE operation, it gets the taint tag of the source 

array and the taint tag from the tag container field of the current 

thread. Then, we get the result of the bitwise OR computation 

for these two tags. Finally, we store the result as a new tag to 

the tag_container field of the current thread. On the other hand, 

when the system assigns an element to a byte array with an 

APUT-BYTE operation, we first get the taint tag from the 

tag_container field of the current thread and the taint tag of the 

target array. The original compiler of the sys- tem produces six 

lines of assembly code for AGET-BYTE, i.e., lines 01-03 and 

12-14. First, it loads the array length to the r3 register (line 01); 

then, it stores the array subscript into memory(lines02-

03).Before loading the array element to the r5 register (line 14), 

it judges if the array is out of boundary (line 12); if so, it jumps 

to an exception handling (line 13).  

To maintain the taint tag, we instrument the compiler to add 

8 instructions (lines 04-11 marked by *). Specifically, it first 

calculates the memory location of the taint tag of the array (lines 

04-07) and loads the tag to the r1 register (line 08); then, it loads 

the taint tag saved in the current thread to the r12 register (line 

09) and calculates the new tag by a bitwise OR operation for 

these two tags (line 10). Finally, it saves the new tag to the 

current thread for later use in APUT-BYTE (line 11). 

 

 

 
 

The original compiler of the sys- tem produces four lines of 

assembly code for APUT-BYTE, i.e., lines 11-14. First, it loads 

the array length to the r2 register (line 11), and then, it judges if 

the array is out of boundary (line 12). If so, it jumps to an 

exception handling (line 13); otherwise, it stores the value in r5 

into the target array (line 14). To maintain the taint tag, we 

instrument the compiler to add 10 instructions (lines 01-10 

marked by *). Specifically, it first loads the taint tag of the 

current thread to the r2 register (line 01). Then, it calculates the 

memory location of the taint tag of the array (lines 02-07) and 

loads thetagtother1 register(line08). Finally, it calculates the 

new tag with a bitwise OR operation for these two tags (line 09) 

and saves the new tag to the target array (line 10). 

3) File operations 

 When an SMS message is stored into the SMS database file, 

the taint tag carried by the text message will be lost. In Android, 

because the file operations are performed by calling the native 

layer methods through the Posix class, which is in the 

framework layer, we modify the operations associated with the 

Posix class for this purpose. Specifically, when a byte array is 

stored in a file, we first extract the taint tag of the array, and 

then, we add it to the extra extended attribute of the target file. 

Later, when we read the data from a file, we first get the taint 

tag from the file’s extra extended attribute and then add it to the 

corresponding byte array. 

C. Security policy enforcement  

The malicious apps could forward the stolen SMS 

authorization code through SMS Manager or network interface 

(taint sinks). Therefore, to catch such behaviors, we need to 
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modify the corresponding interfaces in Android’s framework 

layer and apply corresponding security policies. When it 

forwards the message through the SMS Manager, we extract the 

tag of the data to be sent. When it forwards the data through the 

network interface, it could be in several ways, e.g., by email, 

with HTTP request, and with TCP/UDP sockets. However, in 

any way, the network data will eventually be submitted to the 

system call of the kernel, which is performed through the Posix 

class. Therefore, we could detect and protect the SMS 

authorization data by monitoring the network-related 

operations in the Posix class. 

1) Security policies  

If we get a taint tag from a byte or character array, we may 

possiblygetseveralvalues.Amongthesevalues,0x00000000 (i.e., 

t_n) represents that the data do not contain any taint tags; 

0x00000001 (i.e., t_p) represents that the data potentially 

contain an authorization code and that the data are directly 

obtained through SMS broadcasting; 0x00000002 (i.e., t_d) and 

0x00000003 (i.e., t_d|p) represent that the data are fetched from 

the SMS database; and 0x000000007 (i.e., t_a|d|p) represents 

that the data are fetched from the SMS database and contain an 

authorization code. When the value is 0x00000001 or 

0x00000007, we manipulate the data according to our pre-

defined rules (e.g., prohibit sending, warn the user, or send a 

bogus value). It is important to note that if an app sends out data 

with a tag of 0x00000001 (i.e., t_p), we think that it is a 

dangerous operation. This is because the data are directly 

obtained through SMS broad- casting, and then, the app is 

attempting to send it out. This is a malicious action, as a benign 

app always fetches an SMS message from the SMS database 

and then sends it out. 

5. Evaluation  

In this section, we evaluate the effectiveness as well as the 

performance overhead of our prototype system. 

A. Effectiveness  

 We ran our prototype to track and protect the SMS 

authorization code on an LG Nexus 5 smart phone. To evaluate 

the effectiveness of our system, we ran each sample every time 

and sent real authorization code messages through some 

popular shopping and banking websites to the smart phone. The 

prototype printed log information about the authorization 

codes. With this log information, we then retrieved the 

evaluation results. The evaluation results show that among the 

1,218 malicious samples, 885 of them obtained the messages, 

and the remaining 333 samples failed to obtain them. Of the 885 

samples that obtained messages, 429 of them obtained 

messages through SMS broadcasting, 120 of them obtained 

messages by reading the SMS database, and 336 of them 

obtained messages both through the SMS broadcasting and by 

reading the SMS database. Concerning subsequent actions, in 

the 885 samples that obtained messages, 312 of them did not 

forward the messages, 152 of them forwarded the messages, 

although we did not get any taint tags for the data, and 421 of 

them forwarded the messages, but we did obtain the 

authorization code tag. Among the 421 samples that forwarded 

messages with taint tags, 212 of them transmitted the data 

through SMS Manager, 108 of them transmitted the data 

through the network interface, and 101 of them transmitted the 

data through both the SmsManager and the network interface. 

The distribution map of the 1,218 SMS-stealing malware 

samples. 

 

 
 

Among the 333 samples that failed to retrieve SMS 

messages, we found that the main reason for their failure was 

the expiration of their software license or software errors. For 

the 312 samples that did not forward the messages after 

obtaining them, we found that the system did not print any log 

information about SMS forwarding. We believe that this is 

reasonable because these samples may need certain conditions 

to be satisfied to trigger the behavior. How to automatically 

trigger this malicious behavior remains an ongoing research 

problem. Among the 152 samples that forwarded messages but 

where we did not get any taint tags, we checked the log 

information and found that these samples did not forward the 

messages successfully. The main reasons for this are that these 

samples failed to connect to a remote server before sending the 

authorization code data, the mailbox’s password had been 

changed when sending through email, or the license expired. In 

summary, our system effectively captured the taint tags for the 

421 samples that actually forwarded the SMS authorization 

code and blocked such attempts. In the log information 

produced by the 1,218 samples, we also collected 1,311 target 

IP addresses and 294 target phone numbers for the stolen 

authorization codes. We found that the top three target 

addresses are located in mainland China, USA, and Hong Kong, 

and 87.66% (1,407/1,605) of the target addresses are located in 

mainland China. The distribution map of target addresses for 

SMS-stealing samples is shown in Figure 7. We will release the 

addresses that we collected to the community to improve the 

detection of such malware. 

B. Performance overhead  

To measure the performance overhead introduced by Code 

Tracker, we have performed several micro benchmarks, i.e., a 

compiler micro benchmark, a Java micro benchmark, and an 



International Journal of Research in Engineering, Science and Management  

Volume-2, Issue-12, December-2019 

www.ijresm.com | ISSN (Online): 2581-5792     

 

207 

IPC micro benchmark. The evaluation is conducted on an LG 

Nexus 5 phone with our system. 

1) Compiler microbenchmark  

We measure the size of the oat files and the total compilation 

time. For the compiler micro benchmark, we select the ten most 

popular apps in Google play as our evaluation datasets. The ten 

apps are Free VPN, Google Translate, Youtube, Instagram, 

Lantern, Taobao, Twitter, Alipay, Google Game, and Tumblr. 

We com- pile each app every time with the original compiler 

and our instrumented compiler and record the size of the 

produced at file and the time of compilation. We conduct the 

benchmarks ten times for each app and calculate the average. 

Table 1 shows the evaluation results of the compiler 

microbench- mark. On average, Code Tracker introduces an 

approximate 0.07% overhead with respect to the size of oat files 

and an approximate 1.79% overhead with respect to the 

compilation time. Compared to TaintART [9], Code Tracker 

has a better performance as TaintART incurs about 19.9% 

overhead with respect to the compilation time. 

 Java microbenchmark: Because the Java micro 

benchmark can accurately reflect the runtime overhead 

introduced by Code Tracker. The maximum overhead 

introduced by Code Tracker is 6.92% (String score), 

and the minimum loss is 0.01% (Sieve score). The 

average performance overhead incurred by Code 

Tracker with Caffeine Mark is 1.33%, which is much 

better than TaintART [9] that introduces about 14%. 

Our approach is thus a lightweight solution. 

2) IPC microbenchmark  

To perform the evaluation of the IPC micro benchmark on 

Code Tracker, we have developed a pair of client/server apps 

that communicate through Binder in Android. Specifically, the 

client records the time (t_0) before sending a message to the 

server. The server will also send a message back to the client 

after receiving the client’s message. Then, the client records the 

time (t_1) at which it receives a message from the server.  

Therefore, `t1-t0' represents the elapsed time. We repeat the 

test ten thousand times and record the execution times. We also 

calculate the memory usage or the client and server apps during 

their communication. 

 

 
Table 2 shows the test results. The overhead of the IPC 

execution time is 0.90%, and the memory usage overheads for 

the client and server are 0.66% and 1.17%, respectively. In 

contrast, the overheads introduced by Taint ART [9] are about 

4.35% for the IPC execution time and 4% for the memory 

usage, which are both higher than Code Tracker. 

6. Discussion  

In this section, we discuss some possible limitations of Code 

Tracker and potential future work. 

A. Future work  

First, Code Tracker is designed for the protection of SMS 

authorization codes, not for the protection of general text 

messages. However, in our decompilation process, we found 

that many malware apps steal general messages. Therefore, in 

the future, we can easily extend Code Tracker into a pro- to type 

system to protect all text messages by applying the taint tags to 

SMS messages and changing the security policies accordingly. 

Second, Code Tracker requires changes to the underlying 

framework; it cannot be transparently supported as a user-level 

solution. We using Greedy algorithm to protect the information 

from the third parties. 

7. Related work  

A. Protection of SMS messages  

A variety of systems have been designed to prevent SMS 

messages from being leaked in smart phones. For example, 

Secure SMS [20] and other similar systems[21]–[23]leverage 

cryptographic algorithms to encrypt the SMS messages for 

confidentiality, integrity and authentication services, which is a 

different goal compared to Code Tracker. Secure SMS [7] 

attempts to protect SMS messages by adjusting the app’s 

receiving sequence of text messages in the system so that the 

default SMS app can get the text message first. Then, it blocks 

the SMS broadcasting to prevent malicious apps from getting 

the message. However, Secure SMS only works in Android 

versions prior to 4.4. Other systems [24]–[27] have also been 

proposed to prevent phishing messages. Specifically, these 

systems search the content of SMS messages to find URLs that 

might link to malicious apps for installation and then block 

users’ dangerous operations. In contrast to these apps, Code 

Tracker aims to provide protection for authorization codes in 

SMS messages. 

B. Confinement of smartphone apps 

A number of systems have been implemented to limit apps’ 

access to sensitive data. For example, Kirin [39] confines apps 

by preventing third-party apps from accessing private data. 

FlaskDroid [40] achieves this goal by hooking Android system 

services. AppCage [41] leverages two complimentary user-

level sandboxes to interpose and regulate an app’s access to 

sensitive APIs. To prevent potential privacy leakage, Aurasium 

[42], AppGuard [43], TISSA [6], and RetroSkeleton [44] have 

been proposed to enforce finegrained access control on 

sensitive data. All these systems may be able to be leveraged to 
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provide protection for sensitive data (including SMS 

authorization codes) on legacy runtimes (i.e., Dalvik) in 

Android, but not on the ART runtime. In contrast, Code Tracker 

works well on Android’s ART runtime and can provide 

protection as well as tracking for authorization codes in SMS 

messages. 

8. Conclusion  

In this paper, we design a dynamic lightweight approach for 

tracking and protecting authorization codes in Android, called 

Code Tracker. Specifically, we leverage the taint tracking 

technique and mark authorization codes with taint tags at the 

origin of the incoming SMS messages and propagate the tags 

through the system. Then, we apply security policies at the 

endpoints where the tainted authorization code is being sent out. 

The evaluation results on real malware samples demonstrate the 

effectiveness of our system, and the introduced performance 

overhead is low (< 2% on average). 
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