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Abstract: Today, and potentially for a long time to come, the full 

driving role is too complicated to be entirely formalized as a 

sensing robotic system that can be directly addressed by model-

based or learning-based approaches to achieve maximum 

unregulated vehicle autonomy. Localization, navigation, scene 

awareness, vehicle control, route optimization and higher-level 

design decisions related to the development of autonomous 

vehicles remain full of open challenges. This is particularly true 

for unconstrained, real-world operations where the allowable 

error margin is extremely small and the number of edge cases is 

extremely large. Until these problems are solved, people will 

remain an important part of the driving mission, tracking the AI 

process from just over 0 % to just fewer than 100% of the driving. 
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1. Introduction 

The fact that human beings are bad drivers, is well 

documented in popular culture all over the globe. While this 

idea is often over-dramatized, there is some truth to it in that 

we’re at times distracted, drowsy, drunk, drugged, and 

irrational decision makers. This paper focuses on the analysis 

of driving behavior using deep learning and how it is done to 

collect data, which will be used to improve the autonomous 

driving technology. This paper acts as a review paper for MIT-

AVT study research paper. This study is still going on and on a 

much larger scale than when it was started. Volunteers drive 

their cars in day-to-day environment, and MIT researchers 

collect the data from that drive with the help of various devices 

that are discussed below. To date, there are more than 160 

participants, >15500 days of participation, 51000 miles and 6.5 

billion frames of data collected. This does not mean, however, 

that a perception-control system that drives better than the 

average human driver is easy to design and develop. The 2007 

DARPA Urban Challenge was a landmark achievement in 

robotics and autonomous vehicle technologies, when 6 of the 

11 autonomous vehicles in the finals successfully navigated an 

urban environment to reach the finish line, with the first place 

finisher traveling at an average speed of 15 mph.  

2. Sensors and datasets 

Autonomous cars are becoming the new face of automobile 

industry. To track their surroundings, these cars use different  

 

sensors. Radar, Lidar, SONAR, and GPS among others are 

some of the sensors and tech used. A host of systems and 

technologies are used in autonomous driving that help control 

the car such as Bayesian simultaneous localization and mapping 

(SLAM), Real-time locating system (RTLS) and Deep neural 

network or simply Deep Learning. 

Deep learning is a branch of machine learning which uses 

neural networks that have many layers or that seeks to shape 

hierarchies of data representation on the actual structure of the 

hierarchy with minimal input from a human being. Deep 

Learning or simply deep learning has many properties that can 

be used in automation of driving, such as being able to 

automatically learn complex mapping functions, image 

classification and recognition, speech recognition, etc. 

In cars deep learning is used to process raw data provided by 

Lidar, SONAR and other sensors. Using this information, 

required inputs are given to the car which is on the on the road. 

Now to leverage the power of deep learning to extract human 

behavior from a raw video or to extract any sorts of data, large-

scale annotated datasets are required. Late on, these datasets are 

used to train deep neural network for object detection, image 

detection and other uses. It is then perfected to be used for its 

application in autonomous driving. Some of the data sets used 

to create driving behavior algorithms are: 

COCO: Developed by Microsoft, this dataset is specifically 

sued for object detection and accurate object location. There are 

two steps involved, in the first step, object localization is done 

marking an object by a box and in second step, instance 

segmentation is done, for which precise image masks are 

needed. This whole dataset contains over 200,000 images.  

KITTI: This dataset sets challenging benchmarks for SLAM, 

stereo vision and 3d object detection, captured by driving 

around in rural areas and highway of Karlsruhe. This features 

driving scenarios over 6 hours, tracked at 10-100 Hz using 

various types of cameras and sensors. It also proposes good 

truth for 3d scene flow by collecting 400 dynamic scenes from 

raw datasets and augmenting them with semi-dense scene flow 

ground truth. 

Cityscapes: Dataset focused on understanding the urban 

street scenes semantically. It features large sets of stereo video 

recorded in pixel level from 50 different cities and textual 

labeling at example level. It also contains 20,000 partially 
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segmented images with coarse annotations. 

CamVid: This dataset features videos with frame-wise 

semantic labels, captured from perspective of driving 

automobile. The ground truth labels in this dataset associate 

each pixel with one of the 32 different semantic classes. It also 

enables research on topics such as pedestrian detection and 

label propagation. 

Design of control systems in the driving domain have 

benefited greatly from learning-based approaches that leverage 

large-scale data collection in order to construct models that 

generalize over the edge cases of real-world operation. The 

software visualization is also the foundation of a good study of 

naturalistic driving. Here, the hardware such as camera, 

sensors, etc. and software that performs the data collection. All 

these components work continuously to record all sensors and 

data streams by time-stamping them, capture and store HD 

video from a set of cameras, collect vehicle telemetry from The 

vehicle's CAN (Control Area Network) buses have remote 

cellular connectivity to identify when a device failure occurs 

and to be discreet and elegant so that it does not impact the 

overall driving experience. 

So the application of software engineering, data processing, 

distributed computing, deep learning techniques and other 

techniques and technologies are being utilized to create 

autonomous vehicles in rapiDeep Learning changing 

transporting systems. Autonomous vehicles will revolutionize 

the way humans travel and transport goods. Though there is still 

couple of years of research before the first fully autonomous 

vehicle arrives. 

3. Structure and goals 

The governing principle underlying the design of all 

hardware, low-level software, and higher-level data processing 

performed in this AVT study is: continual, relentless 

innovation, while maintaining backward compatibility. From 

the beginning, we chose to operate at the cutting-edge of data 

collection, processing, and analysis approaches. This meant 

trying a lot of different approaches and developing completely 

new ones: from sensor selection and hardware design to the 

robust time-critical recording system and the highly 

sophisticated data pipeline described in. It’s a philosophy that 

allowed us to scale quickly and find new solutions at every level 

of the system stack.  

As previously noted, the medium duration (one month long) 

NDS is conducted using MIT-owned vehicles, while the long 

duration (over 1 year) NDS is conducted in a vehicle owned by 

subject. Participants are divided into primary and secondary 

drivers. Warning labels on windows to advise non-consented 

passengers and drivers of the ongoing data collection, and 

coordinate with project staff for system maintenance and data 

retrieval. Recruitment is conducted through flyers, social 

networks, forums, online referrals, and word of mouth. Primary 

drivers are paid for their time involved in vehicle 

instrumentation, appointments for system maintenance, data 

recovery, and questionnaires completion.  

Participants in the medium duration (one month long) 

NDS7are provided with introductions to the fleet vehicles in the 

form of an approximately 1.5-hour long training session. This 

session is intended to introduce drivers to the physical 

characteristics of the vehicle, and provide a sufficient 

understanding of vehicle features in order to support safe use of 

advanced technologies. Participants are provided with a study 

overview by a researcher and presented with manufacturer 

produced videos or information packets on one or more of the 

basic and advanced features available in the vehicle. Their 

devices are matched with the car and are given the opportunity 

to perform some voice commands. (e.g. making a phone call, 

entering a destination). Next, the role, activation and use of the 

following features are given more detailed overviews: 

 Adaptive Cruise Control (ACC)  

 Pilot Assist (from Volvo) 

 Super Cruise (from Cadillac) 

 Forward Collision Alert Warning / City Safety (from 

Volvo) 

 Automatic Emergency Braking 

 Lane Departure Warning (LDW) 

 Lane Keep Assist (LKA) 

 Blind Spot Monitor 

Following this stationary in-vehicle training, participants are 

provided with an on-road training drive on a multi-lane 

highway. A driving session on the highway takes at least 30 

minutes to provide realistic exposure to real-world setting 

systems. Participants were encouraged to use the researcher and 

ask questions while checking the systems during the learning 

ride. Three questionnaire batteries and a semi-structured 

interview are used to capture medium-length (one month long) 

NDS self-report information. A semi-structured interview is 

conducted in person between a research associate and the study 

participant at the end of the one-month naturalistic driving 

period, and lasts approximately 30-60 minutes. It consists of 

predefined questions focusing on initial reactions to the vehicle, 

experience during the training drive, how training affected their 

understanding of the technologies, and driver perceptions of the 

technologies. Naturalistic driving data and automated in-depth 

training analysis of these data provide observations, 

recommendations and well-founded scenarios as to the road to 

safe and effective integration of artificial intelligence into 

modern and future vehicle systems. In such autonomous vehicle 

engineering, raw data and a high level understanding of human 

actions and system performance are of importance. They are: 

 Car manufacturers 

 Suppliers for automotive parts 

 Insurance companies 

 Technology companies 

 Government agencies 

 Education and academic organizations 

When the path forward is full of uncertainty, risks, 
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potentially costly misaligned investments, and paradigm shifts, 

open innovation provides more value than closed competition. 

At this moment in time, autonomous vehicle technology is a 

space where competitors win by collaborating, sharing high-

level insights and large-scale, real-world data. High-level 

measures such as system use and system performance can be 

used to inform the design, development and validation of future 

vehicle systems. In and out of the car, video recording can be 

used to build systems for vision, monitoring, scheduling, driver 

sensing, and driver aid. 

The backbone of a successful naturalistic driving study is the 

hardware and low-level software that performs the data 

collection. In the study conducted by MIT, that role is served 

by a system named RIDER. It was designed and continuously 

developed to satisfy the following goals and requirements: 

Time-stamped Asynchronous Sensor Recording: Record all 

sensors and data streams in a way that each sample of data (no 

matter its frequency or data source) is time-stamped using a 

centralized, reliable time-keeper. In other words, data has to be 

time-stamped in a way that allows perfect synchronization of 

multiple data streams in post-processing. 

High-Definition Video: Capture and record 3 to 6 cameras at 

720p (2.1 megapixels) resolution. One of the most important 

design decisions of the entire study was the choice of camera 

positions, resolution, and compression. 

 CAN Bus: Collect vehicle telemetry from the 

Controller Area Network (CAN) bus(es) of the 

vehicle. Each vehicle has different ports and bus use 

rules, with little publicly available information on 

message ID mapping or message quality. Raw CAN 

messages must be registered in such a manner that the 

essential information is stored within those messages 

even if they cannot be decoded at the time of 

compilation. 

 Remote Cellular Connectivity: Low-bandwidth, 

infrequent communication of system status via a 

cellular connection in order to detect when RIDER 

system malfunction occurs. 

 Discrete and Elegant Appearance: Parts of the system 

that are noticeable from inside or outside the car 

should have a minimal shape factor and visual design 

features that do not distract from the vehicle's overall 

appearance or affect the overall driving experience. 

 Camera Mounting is Robust but Removable: 

Mounting must be consistent, reliable, and removable 

designed specifically for each vehicle’s interior 

physical characteristics. 

4. Conclusion 

The application of state-of-the-art embedded system 

programming, software engineering, data processing, 

distributed computing, computer vision and deep learning 

techniques to the collection and analysis of large-scale 

naturalistic driving data in the MIT-AVT study seeks to break 

new ground in offering insights into how human and 

autonomous vehicles interact in the rapid Deep Learning 

changing transportation system. This research introduces the 

methodology behind the study of MIT-AVT aimed at 

identifying and encouraging the next wave of naturalistic 

driving studies. 
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