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Abstract: In this paper, we investigate solutions to the Spaced 

Repetition Scheduling problem, a combinatorial optimization 

problem pertinent to the fields of behavioral and brain science, 

among others. The problem, involving placement of elements, each 

with a certain benefit, from a fixed set and allowed spaced 

repetition, asks to maximize the net benefit in a given integral time, 

with each element taking up unit time. The problem is explored 

through the lens of complex networks, by remodeling it as graphs 

and subgraphs. Using the well-defined tools within network 

science, we analyze the problem and hence find directed clusters 

as a heuristic for element placement. 
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1. Introduction 

The Spaced Repetition Scheduling problem is a 

combinatorial optimization problem which involves the 

selection and placement of k elements in S1, the final set of 

elements, from set S containing up to k unique elements. For 

each element ui in S1, placement is constrained by ui[1], 

denoting the minimum distance in number of elements between 

two instances of ui (notated as interval). The objective, given a 

k and S, is to create an S1 that maximizes sum of benefit (u[0]), 

given by 𝑚𝑎𝑥 ∑ ui[0]k
i=0 . 

2. Problem 

A. Example 

With the problem defined as in §1, we note an arbitrary 

example to elucidate it as follows: 

S = {a, b, c, d}, where 

a = {30, 4}, b = {20, 3}, c = {10, 2}, d = {4, 1} 

k = 3 

We define S1 as the final set of elements, with |S1| = k. 

A valid permutation is (a, c, b) 

However, (a, c, a) is invalid, since a[1] = 4 and the distance 

between two consecutive a’s in this configuration is 2 (< 4) 

B. Motivation 

Spaced repetition is a technique for learning which uses 

repeated study of content following a schedule determined by 

a spaced repetition algorithm. A field of research in the 

behavioral and brain sciences, spaced repetition is used to 

improve long-term retention of information as well as aid in 

language learning. 

Furthermore, it is likely that in machine scheduling 

problems, job-shop scheduling problems, or variants of 

scheduling problems pertinent to machine or processor  

 

scheduling, such a configuration could arise (with intervals 

representing time between usage of machines or resources). 

Despite promising results based on [1] and [2], it is noted that 

a quick literature survey returns few results for algorithms on 

scheduling spaced repetitions.  

Therefore, I chose to investigate solutions to the problem. 

3. Approach 

Since the problem in itself is NP-Hard (reducible to bounded 

Knapsack problem), it is imperative to consider 

computationally cheap heuristics in my approach. 

My learning-based approach involves: 

 Finding likely pairs 

 Finding likely clusters of size k 

A. Procedure to generate elementary set 

My approach to each data point given, in the ordered set 

format (S1), is as follows 

    Find the next unique element, u, with index i 

 Find next instance of this element, with index j 

 Extract subset N from set S1, on the interval [i, j) 

With subset N extracted, we can transmute the sub-problem 

into a graph. 

 First, consider u as the root of a directed graph G = {V, 

E} 

 Create edges for each element in N as follows: 

 

∀ 𝑘 ∈ 𝑁 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑑𝑔𝑒𝑠 {𝑢, 𝑘} 

 

 For each edge, assign edge weight as  

 

∀𝑘 ∈ 𝑁  
 

𝑤𝑒𝑖𝑔ℎ𝑡 = 1/(𝑖𝑛𝑑𝑒𝑥(𝑘) − 𝑖𝑛𝑑𝑒𝑥(𝑢)  ∗  (𝑗 −  𝑖) ) 

 

Hence, for the set {a, b, c, d, a} the first subset is{a, b, c, d}; 

there exists a graph with the following vertices and edges: 

 

V = {a, b, c, d} 

E = {{a,b -1/8}, {a,c - 1/12}, {a,d - 1/16}] 

B. Rationale 

Essentially, for the outdegree of a specific instance of a, we 

calculate its ‘attachment’ to each other node. It is sufficient to 

arbitrarily assign attachment as (1/k) since the numerical value 
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of edge weight holds no significance and is only used to 

compare between elements to assign a ranking. 

Furthermore, since distance in elements between all 

instances of a particular element is not necessarily constant (but 

bounded below by a[1] for any element a), we must normalize 

weight by multiplying it by 1/(j-i), essentially weighting 

attachments in wider separated (sparser) instances lower. 

Thus, we now have, for one instance of a particular element, 

a measure of attachment to all the elements between it and the 

next instance. Of course, it is imperative to realize that these 

elements and their permutations need not stay constant across 

instances.  

Hence, we repeat for all instances of the element (say a), 

keeping in mind three procedures:  

 After finding the edge set for each graph with root 

node a, for each common pair, we take a cumulative 

mean. For example, say out of 25 edge sets, 20 of them 

contain {a,b}, we take mean of the weights of all these 

20, to obtain the average ‘attachment’ of a with b.  

 If {a,n}, for any n representing an element, occurs 

more than once (in varying positions) in one sub-set, 

add their weights. 

 If an edge does not exist in the edge set, add it to the 

set 

We repeat the same procedure for every element in the set 

(including their instances), to obtain a comprehensive edge set 

from each element, representing a set of weighted outdegrees 

of each element. 

It is critical to note that edge, say {a,b} will not have the same 

weight as {b,a} due to the graph being directed. This is relevant 

in considering clustering as directed, non-commutative 

clustering. 

Similarly, repeat for each new data point (ensuring that the 

elements are all from the same set S), and compute averages 

accordingly. 

Thus, each weight per edge represents the average 

attachment to the second element in the pair of vertices. Since 

a uniform procedure has been applied to each element, we can 

consider the edge with highest weightage in the edge set for 

each element to be the most favorable pair. 

C. Extension 

Now, a suitable method to pair elements has been found. 

So, upon fixing a starting element, one can search the edge 

pair most ‘attached’ to that element which also satisfies the 

interval restriction, and then repeat for the second element, and 

so on.  

Additionally, once the edge set, along with weights has been 

calculated, accession is O(1) and therefore generating a new list 

of size k, with starting element fixed is O(k). It is also clear to 

see that generation of the edge set itself does not take up 

exponential time. 

A problem arises when intending to find the initial element. 

One can naively compute the mode of all first elements in given 

data and select that. Alternatively, the element with the highest 

benefit: interval ratio can be chosen. It is also likely 

(conjectured) that as k, the size of S1, grows large, the starting 

element will tend not to matter in improving benefit. 

D. Clustering of size > 2 

For analytical purposes, or otherwise, it might be relevant to 

compute likelihood of certain clusters of size > 2. 

In this case, we would like to find not only the closest 

neighbor of distance 1 but also the closest neighbor of distances 

n where n > 1. To do this, we must consider neighbors that are 

connected by walks of length n.  

It is important to make a distinction between naively 

choosing the nth highest rank in our rudimentary out degree 

weight list and this procedure. The list represents a direct 

connection from the start node to a target node and not a walk 

of length n.  

To compute walks of length n, we use the following well-

known theorem. 

 

Theorem: Raising an adjacency matrix A of a simple graph 

 G to the nth power gives the number of n-length walks 

between two vertices vi, vj of G in the resulting matrix. [3] 

 

This gives, 

 

Corollary: Raising an adjacency matrix of weights W of a 

simple graph G to the nth power gives the relative weighted 

attachment between two vertices vi, vj connected by n-length 

walks of G in the resulting matrix. 

 

Hence, we are to simply raise W to the nth power and then 

observe the row of the starting element we are concerned with. 

The element in the row with the greatest weight is the most 

common element that is connected by walks of length n in the 

matrix, and is therefore the ideal nth element in the cluster. 

(assuming starting element (0th) is fixed) 

Such clusters could be potentially useful for determining 

trends in the data and in the nature of the graph itself. In the 

case of spaced repetition for learning, it could signify trends 

with a particular event/element being fixed – lending to analysis 

into the qualitative nature of the relationship between elements 

in the cluster.  

4. Generating Test Data 

Due to the nature and applicability of the problem, procuring 

test data might be difficult or time-consuming. 

We propose a greedy heuristic as follows: 

 Create an empty list of k elements 

 Calculate element with next highest benefit: interval 

ratio 

 Place element at first empty position and as 

frequently as possible, satisfying the condition that 

the element is placed in the next empty space which 
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also satisfies interval distance restriction. 

 Repeat steps two and three till list filled 

This greedy approach should provide reasonable test data (in 

polynomial time), for analytical purposes at the very least.  

A more accurate, albeit exponential time, algorithm could 

employ a dynamic programming-based approach. 

5. Conclusion 

In conclusion, we note that our approach is quite effective in 

identifying clustering trends of particular elements in the list. 

Moreover, in computing benefit, with each element being a 

function of the previous element (using the edge set), it is seen 

that the top weight or attachment will not always satisfy interval 

restriction and second or further preferences will have to be 

chosen.  

When applied to real data, a measure for tallying the number 

of times the top weight is not chosen could be implemented. If 

this number is relatively (relative to k) large, for a particular 

element, the real-life system can be modified to decrease 

interval of a particular element, to potentially increase benefit.  

Valid extensions include modifications to accommodate for 

differing time taken per element, a dynamic tweaking procedure 

for the weights, as well as dependencies between elements, 

altering clustering properties. 
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