
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-10, October-2019

www.ijresm.com | ISSN (Online): 2581-5792

231

Abstract: In this paper, we investigate solutions to the Spaced

Repetition Scheduling problem, a combinatorial optimization

problem pertinent to the fields of behavioral and brain science,

among others. The problem, involving placement of elements, each

with a certain benefit, from a fixed set and allowed spaced

repetition, asks to maximize the net benefit in a given integral time,

with each element taking up unit time. The problem is explored

through the lens of complex networks, by remodeling it as graphs

and subgraphs. Using the well-defined tools within network

science, we analyze the problem and hence find directed clusters

as a heuristic for element placement.

Keywords: scheduling problem, complex network, graph theory

1. Introduction

The Spaced Repetition Scheduling problem is a

combinatorial optimization problem which involves the

selection and placement of k elements in S1, the final set of

elements, from set S containing up to k unique elements. For

each element ui in S1, placement is constrained by ui[1],

denoting the minimum distance in number of elements between

two instances of ui (notated as interval). The objective, given a

k and S, is to create an S1 that maximizes sum of benefit (u[0]),

given by 𝑚𝑎𝑥 ∑ ui[0]k
i=0 .

2. Problem

A. Example

With the problem defined as in §1, we note an arbitrary

example to elucidate it as follows:

S = {a, b, c, d}, where

a = {30, 4}, b = {20, 3}, c = {10, 2}, d = {4, 1}

k = 3

We define S1 as the final set of elements, with |S1| = k.

A valid permutation is (a, c, b)

However, (a, c, a) is invalid, since a[1] = 4 and the distance

between two consecutive a’s in this configuration is 2 (< 4)

B. Motivation

Spaced repetition is a technique for learning which uses

repeated study of content following a schedule determined by

a spaced repetition algorithm. A field of research in the

behavioral and brain sciences, spaced repetition is used to

improve long-term retention of information as well as aid in

language learning.

Furthermore, it is likely that in machine scheduling

problems, job-shop scheduling problems, or variants of

scheduling problems pertinent to machine or processor

scheduling, such a configuration could arise (with intervals

representing time between usage of machines or resources).

Despite promising results based on [1] and [2], it is noted that

a quick literature survey returns few results for algorithms on

scheduling spaced repetitions.

Therefore, I chose to investigate solutions to the problem.

3. Approach

Since the problem in itself is NP-Hard (reducible to bounded

Knapsack problem), it is imperative to consider

computationally cheap heuristics in my approach.

My learning-based approach involves:

 Finding likely pairs

 Finding likely clusters of size k

A. Procedure to generate elementary set

My approach to each data point given, in the ordered set

format (S1), is as follows

 Find the next unique element, u, with index i

 Find next instance of this element, with index j

 Extract subset N from set S1, on the interval [i, j)

With subset N extracted, we can transmute the sub-problem

into a graph.

 First, consider u as the root of a directed graph G = {V,

E}

 Create edges for each element in N as follows:

∀ 𝑘 ∈ 𝑁 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑑𝑔𝑒𝑠 {𝑢, 𝑘}

 For each edge, assign edge weight as

∀𝑘 ∈ 𝑁

𝑤𝑒𝑖𝑔ℎ𝑡 = 1/(𝑖𝑛𝑑𝑒𝑥(𝑘) − 𝑖𝑛𝑑𝑒𝑥(𝑢) ∗ (𝑗 − 𝑖))

Hence, for the set {a, b, c, d, a} the first subset is{a, b, c, d};

there exists a graph with the following vertices and edges:

V = {a, b, c, d}

E = {{a,b -1/8}, {a,c - 1/12}, {a,d - 1/16}]

B. Rationale

Essentially, for the outdegree of a specific instance of a, we

calculate its ‘attachment’ to each other node. It is sufficient to

arbitrarily assign attachment as (1/k) since the numerical value

On the Spaced Repetition Scheduling Problem

Rohan Gupta

Student, Department of Mathematics and Computer Science, TISB, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-10, October-2019

www.ijresm.com | ISSN (Online): 2581-5792

232

of edge weight holds no significance and is only used to

compare between elements to assign a ranking.

Furthermore, since distance in elements between all

instances of a particular element is not necessarily constant (but

bounded below by a[1] for any element a), we must normalize

weight by multiplying it by 1/(j-i), essentially weighting

attachments in wider separated (sparser) instances lower.

Thus, we now have, for one instance of a particular element,

a measure of attachment to all the elements between it and the

next instance. Of course, it is imperative to realize that these

elements and their permutations need not stay constant across

instances.

Hence, we repeat for all instances of the element (say a),

keeping in mind three procedures:

 After finding the edge set for each graph with root

node a, for each common pair, we take a cumulative

mean. For example, say out of 25 edge sets, 20 of them

contain {a,b}, we take mean of the weights of all these

20, to obtain the average ‘attachment’ of a with b.

 If {a,n}, for any n representing an element, occurs

more than once (in varying positions) in one sub-set,

add their weights.

 If an edge does not exist in the edge set, add it to the

set

We repeat the same procedure for every element in the set

(including their instances), to obtain a comprehensive edge set

from each element, representing a set of weighted outdegrees

of each element.

It is critical to note that edge, say {a,b} will not have the same

weight as {b,a} due to the graph being directed. This is relevant

in considering clustering as directed, non-commutative

clustering.

Similarly, repeat for each new data point (ensuring that the

elements are all from the same set S), and compute averages

accordingly.

Thus, each weight per edge represents the average

attachment to the second element in the pair of vertices. Since

a uniform procedure has been applied to each element, we can

consider the edge with highest weightage in the edge set for

each element to be the most favorable pair.

C. Extension

Now, a suitable method to pair elements has been found.

So, upon fixing a starting element, one can search the edge

pair most ‘attached’ to that element which also satisfies the

interval restriction, and then repeat for the second element, and

so on.

Additionally, once the edge set, along with weights has been

calculated, accession is O(1) and therefore generating a new list

of size k, with starting element fixed is O(k). It is also clear to

see that generation of the edge set itself does not take up

exponential time.

A problem arises when intending to find the initial element.

One can naively compute the mode of all first elements in given

data and select that. Alternatively, the element with the highest

benefit: interval ratio can be chosen. It is also likely

(conjectured) that as k, the size of S1, grows large, the starting

element will tend not to matter in improving benefit.

D. Clustering of size > 2

For analytical purposes, or otherwise, it might be relevant to

compute likelihood of certain clusters of size > 2.

In this case, we would like to find not only the closest

neighbor of distance 1 but also the closest neighbor of distances

n where n > 1. To do this, we must consider neighbors that are

connected by walks of length n.

It is important to make a distinction between naively

choosing the nth highest rank in our rudimentary out degree

weight list and this procedure. The list represents a direct

connection from the start node to a target node and not a walk

of length n.

To compute walks of length n, we use the following well-

known theorem.

Theorem: Raising an adjacency matrix A of a simple graph

 G to the nth power gives the number of n-length walks

between two vertices vi, vj of G in the resulting matrix. [3]

This gives,

Corollary: Raising an adjacency matrix of weights W of a

simple graph G to the nth power gives the relative weighted

attachment between two vertices vi, vj connected by n-length

walks of G in the resulting matrix.

Hence, we are to simply raise W to the nth power and then

observe the row of the starting element we are concerned with.

The element in the row with the greatest weight is the most

common element that is connected by walks of length n in the

matrix, and is therefore the ideal nth element in the cluster.

(assuming starting element (0th) is fixed)

Such clusters could be potentially useful for determining

trends in the data and in the nature of the graph itself. In the

case of spaced repetition for learning, it could signify trends

with a particular event/element being fixed – lending to analysis

into the qualitative nature of the relationship between elements

in the cluster.

4. Generating Test Data

Due to the nature and applicability of the problem, procuring

test data might be difficult or time-consuming.

We propose a greedy heuristic as follows:

 Create an empty list of k elements

 Calculate element with next highest benefit: interval

ratio

 Place element at first empty position and as

frequently as possible, satisfying the condition that

the element is placed in the next empty space which

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-10, October-2019

www.ijresm.com | ISSN (Online): 2581-5792

233

also satisfies interval distance restriction.

 Repeat steps two and three till list filled

This greedy approach should provide reasonable test data (in

polynomial time), for analytical purposes at the very least.

A more accurate, albeit exponential time, algorithm could

employ a dynamic programming-based approach.

5. Conclusion

In conclusion, we note that our approach is quite effective in

identifying clustering trends of particular elements in the list.

Moreover, in computing benefit, with each element being a

function of the previous element (using the edge set), it is seen

that the top weight or attachment will not always satisfy interval

restriction and second or further preferences will have to be

chosen.

When applied to real data, a measure for tallying the number

of times the top weight is not chosen could be implemented. If

this number is relatively (relative to k) large, for a particular

element, the real-life system can be modified to decrease

interval of a particular element, to potentially increase benefit.

Valid extensions include modifications to accommodate for

differing time taken per element, a dynamic tweaking procedure

for the weights, as well as dependencies between elements,

altering clustering properties.

References

[1] Baranov, I. V. (2018). Improving Listening Skills in Language Learning

with Spaced Repetition Technique. European Research, 40

[2] Ausubel, D. P., and Youssef, M. (1965). The Effect of Spaced Repetition

on Meaningful Retention. The Journal of General Psychology, 73(1),

147–150.

[3] Connotations of kth Graph Power and path lengths (n.d.). Retrieved from

http://mathworld.wolfram.com/GraphPower.html.

