
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-5, May 2018

www.ijresm.com

114

Overview of Fault Prediction Using Data Mining

Techniques and Software Metrics
T. Siva Kumar

Student, Department of MCA, Dr.BR Ambedkar University, Srikakulam, India

Abstract: Software fault prediction method used to improve the

quality of software. Finding and fixing software fault is difficult,

and needs significant effort. Data mining techniques are used to

discover many hidden factors regarding software. The fault

prediction is a very important task to minimize cost of the

software project and also used in the analysis of software quality.

Fault prediction systems predict faults by using software metrics

and data mining techniques. Software fault prediction models are

built based on a different set of metrics and faulty data of previous

software release to build fault prediction models, which is called

supervised learning approaches. There are some other methods

like clustering, which could be used when there are no previous

available data; these methods are known as unsupervised learning

approaches. There are many software fault prediction techniques

are available. This paper presents the survey on software fault

prediction models.

Key Words: fault prediction, software metrics, classification,

clustering, association rule mining.

I. INTRODUCTION

A fault, by definition, is a structural imperfection in a

software system that may lead to the system’s eventually

failing. In other words, it is a physical characteristic of the

system of which the type and extent may be measured using the

same ideas used to measure the properties of more traditional

physical systems. People making errors in their tasks introduce

faults into a system. These errors may be errors of commission

or errors of omission.

A software fault refers to a defect in a system. An error is

inconsistency between the observed performance of a system

and its specified performance. A software failure occurs when

the delivered product deviates from correct service and perform

unexpected behaviour from user requirements. A software fault

or error may not necessarily cause a software failure. Fault

detection is recognizing that a problem has occurred, even if

you don't know the reason. Faults may be detected by a variety

of quantitative or qualitative approaches. This includes many

of the multivariable, model-based approaches. Fault diagnosis

is investigating one or more root causes of problems to the

point where corrective action can be taken. This is also referred

to as “fault isolation”, especially when need to show the

distinction from fault detection. A "fault" or "problem does not

have to be the result of a complete failure of a software product.

In a process plant, root causes of non-optimal operation might

be hardware failures but problems might also be caused by poor

choice of operating targets, poor feedstock quality or human

error.

The following are the major classes of software faults:

1. Syntactic faults: interface faults and parameter faults called

as syntactic faults.

2. Semantic faults: inconsistent behavior and incorrect results

called as semantic faults.

3. Service faults: QoS faults, SLA (Service Level Agreement)

related faults, and real-time violations are called service

faults.

4. Communication / interaction faults: time out and service

unavailability is called communication or interaction faults.

5. Exceptions: I/O related exceptions and security-related

exceptions are called exception faults.

Data mining is one of the evolution techniques in

information technology. It can be named as “knowledge

mining from data”. Before storing data into data warehouse or

any type of databases, there is important to perform some data

pre-processing steps. The pre-processing steps are data

cleaning, integration, selection, transformation, pattern

evaluation and knowledge presentation [1]. Data mining

includes forecasting what may happen in future, classifying

things into groups by recognizing patterns, clustering things

into groups based on their attributes and associating what

events are likely to occur together. Data mining process is

reliable process and repeatable process by the people with

small quantity of data mining skills. Data mining have two

types of learning technique such as supervised and

unsupervised learning technique. The class label of each

training tuple is known is referred as supervised learning.

Unsupervised learning represents the class label of each

training tuple not known in advance [1].

II. LITERATURE SURVEY

Koru and Liu (2005)[2] built fault prediction models by

using J48,V K-Star, and Random Forests on public NASA

datasets and they used method and class level metrics. F-

measure was selected as performance evaluation metric. KC1

dataset has method level metrics and they converted them into

class level ones by using minimum, maximum, average and

sum operations. Therefore, 21 method level metrics were

converted into 84 (21 _ 4 = 84) class level metrics. They stated

that large modules had higher F-measure values for J48, K-Star

and random forests algorithms. F-measure was 0.65 when they

applied class level metrics and when they chose method level

metrics, F-measure was 0.40. Therefore, they stated that class

level metrics improved the model performance, but detection

of faults was at class level instead of model level.

Khoshgoftaar, Seliya, and Sundaresh (2006)[3] applied case

based reasoning by using 24 product and four execution metrics

on a large telecommunications system to predict software

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-5, May 2018

www.ijresm.com

115

faults. Performance evaluation metrics were average absolute

error and average relative error. They reported that case based

reasoning works better than multivariate linear regression and

correlation based feature selection and stepwise regression

model selection did not improve the performance of models.

When CBR was used with Mahalanobis distance, the best

performance was achieved. When principal component

analysis is applied to remove the metrics’ correlations, CBR

with city block distance approach provided better results than

CBR with Mahalanobis approach.

Gao and Khoshgoftaar (2007)[4] investigated the

performance of Poisson regression, zero-inflated poisson

regression, negative binomial regression model, Zero-Inflated

negative binomial, and Hurdle regression (HP1, HP2, HNB1,

HNB2) techniques on two embedded software applications

which configure the wireless telecommunications products by

using five file level metrics for software fault prediction.

Performance evaluation metrics were Pearson’s chi square

measure, information criteria, average absolute error (AAE),

and average relative error (ARE). They reported that model

based on Zero-Inflated negative binomial technique performs

better than the other algorithms according to the information

criteria and chi square measures. Model based on HP2

technique was the best one when AAE and ARE parameters

were used.

Riquelme, Ruiz, Rodríguez, and Moreno (2008) [5]

investigated two balancing techniques with two classifiers,

Naive Bayes and C4.5, on five public datasets from PROMISE

repository for software fault prediction. They reported that

balancing techniques improve the AUC measure, but did not

improve the percentage of correctly classified instances.

Performance evaluation metrics were AUC and percentage of

correctly classified instances. Sampling metrics were resample

implementation of WEKA and SMOTE.

Chang, Chu, and Yeh (2009) [6] proposed a fault prediction

approach based on association rules to discover fault patterns.

They reported that prediction results were excellent. The

benefit of this method is the discovered fault patterns can be

used in causal analysis to find out the causes of faults.

Arisholma, Briand, and Johannessen (2010) [7] evaluated

fault-proneness models on a large Java legacy system project.

They reported that modelling technique has limited affect on

the prediction accuracy, process metrics are very useful for

fault prediction, and the best model is highly dependent on the

performance evaluation parameter. They proposed a surrogate

measure of cost-effectiveness for assessment of models.

Adaboost combined with C4.5 provided the best results and

techniques were used with default parameters.

III. DATA MINING TECHNIQUES FOR FAULT PREDICTION

There are various data mining techniques used for

predictions which are discussed below.

1. Regression: It is a statistical process to evaluate the

relationship among variables. It analyses the relationship

between the dependent or response variable and

independent or predictor variables. The relationship is

expressed in the form of an equation that predicts the

response variable as a linear function of predictor variable.

Linear Regression: Y=a+bX+u

2. Association Rule Mining: It is a method for discovering

interesting relationships between variables in large

databases. It is about finding association or correlations

among sets of items or objects in database. It basically deals

with finding rules that will predict the occurrence of item

based on the occurrence of other items.

3. Clustering: Clustering is a way to categorize a collection of

items into groups or clusters whose members are similar in

some way. It is task of grouping a set of items in such a way

that items in the same cluster are similar to each other and

dissimilar to those in other clusters.

4. Classification: It consists of predicting a certain outcome

based on a given input. Classification technique use input

data, also called training set where all objects are already

tagged with known class labels. The objective of

classification algorithm is to analyze and learns from the

training data set and develop a model. This model is then

used to classify test data for which the class labels are not

known.

a) Neural Networks: Neural Networks are the nonlinear

predictive models which can learn through training and

resemble biological neural networks in structure. A neural

network consists of interconnected processing elements

called neurons that work together in parallel within a

network to produce output.

b) Decision Trees: A decision tree is a predictive model which

can be used to represent both classification and regression

models in the form a tree structure. It refers to a hierarchical

model of decisions and their consequences. It is a tree with

decision nodes and leaf nodes. A decision node has two or

more branches. Leaf nodes represent a classification or

decision.

c) Naive Bayes: It is based on Bayes theorem with

independence assumption between predictors. Naive Bayes

Classifier is based on the assumption that the presence or

absence of a particular feature of a class in not related to the

presence or absence of any other feature.

d) Support Vector Machines: SVM are based on the concept

of decision planes that define decision boundaries. A

decision plane is the one that separates between a set of

objects having different class membership. SVM is

primarily a classifier method that performs classification

task by constructing hyper plane in a multidimensional

space that separates cases of different class labels. It

supports both regression and classification.

e) Case Based Reasoning: Case based reasoning means

solving new problems based on the similar past problems

and using old cases to explain new situations. It works by

comparing new unclassified records with known examples

and patterns. A simple example of a case based learning

algorithm is k-nearest neighbor algorithm. It is simple

algorithm that stores all available cases and classifies new

cases based on a similarity measure i.e. distance function.

IV. SOFTWARE FAULT PREDICTION METRICS

1. Lines of Code : This metric calculate the faults by

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-5, May 2018

www.ijresm.com

116

a) The total number of lines

b) The number of blank lines in module

c) The number of lines of comments in a module

d) Lines of executable code

e) The number of lines which contain both code and comment

in a module

2. Cyclomatic complexity: The complexity of software can be

correlated with the complexity of the graph.

a) McCabe proposed the cyclomatic number. V(G) which is

equal to the number of linearly independent paths through a

program in its graphs representation to indicate the software

complexity.

b) The V(G) for a program control graph G, is given by:

V (G) = E – N + P

c) Design Complexity: Design complexity measures the

amount of interaction between the modules in a system.

d) Essential complexity: Essential Complexity (eV (G)) is a

measure of the degree to which a module contains

unstructured constructs.

This metric measures the degree of quality of the code. It

is used to predict the maintenance effort and to help in the

modularization process.

3. Halstead Metrics: Halstead metrics are computed statically

from the code and was introduced by Halstead in 1977s [11]

Metrics applicable to several aspects of program. The

metrics are defined as follows. The following token counts

are used to compute the various Halstead metrics

The metrics are defined as follows.

n1 = the number of distinct operators

n2 = the number of distinct operands

N1 = the total number of operators

N2 = the total number of operands

Halstead length content

N = N1 + N2

Halstead volume metric

Volume metric is a measure of the storage

Volume required to represent the program.

V = N. log2, n

Where n = n1+n2

Number of Faults

Faults=V/S0

V. CONCLUSION

Software fault prediction is the process of tracing defective

components in software prior to the start of testing phase.

Occurrence of defects is inevitable, but we should try to limit

these defects to minimum count. Defect prediction leads to

reduced development time, cost, reduced rework effort,

increased customer satisfaction and more reliable software.

REFERENCES

[1] Jiawei Han and Michline Kamber, “ Data Mining concepts and

techniques”, Morgan Kaufmann publishers.

[2] Koru, A. G., & Liu, H. (2005). An investigation of the effect of module

size on defect prediction using static measures. In Workshop on predictor

models in software engineering (pp. 1–5). Missouri: St. Louis.

[3] Khoshgoftaar, T. M., Seliya, N., & Sundaresh, N. (2006). An empirical

study ofpredicting software faults with case based reasoning. Software

Quality Journal, 14(2), 85–111.

[4] Gao, K., & Khoshgoftaar, T. M. (2007). A comprehensive empirical

study of count models for software fault prediction. IEEE Transactions

for Reliability, 56(2), 223–236.

[5] Riquelme, J. C., Ruiz, R., Rodríguez, D., & Moreno, J. (2008). Finding

defective modules from highly unbalanced datasets. Actas taller sobre el

apoyo a la decisión en ingeniería Del software (ADIS-JISBD) (pp. 67–

74).

[6] Chang, C., Chu, C., & Yeh, Y. (2009). Integrating in-process software

defect prediction with association mining to discover defect pattern.

Information and Softwar Technology, 51(2), 375–384.

[7] Arisholma, E., Briand, L. C., & Johannessen, E. B. (2010). A systematic

and comprehensive investigation of methods to build and evaluate fault

prediction models. Journal of Systems and Software, 83(1), 2–17.

