
International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-4, April 2018

118

Room Temperature Control and Fire

Alarm/Suppression IoT Service

using MQTT on AWS

N. Manasa1, C. R. Meghana2, S. Kavyashree3, M. N. Meghana4

1,2,3,4U.G. Student, Department of Electronics and Communication, BGSIT, Mandya, India

Abstract—In this paper we build an MQTT (Message Queue

Telemetry Transportation) broker on Amazon Web Service

(AWS). The MQTT broker has been utilized as a platform to

provide the Internet of Things (IoT) services which monitor and

control room temperatures, and sense, alarm, and suppress fire.

Arduino was used as the IoT end device connecting sensors and

actuators to the platform via Wi-Fi channel. We created smart

home scenario and designed IoT massages satisfying the scenario

requirement. We also implemented the smart some system in

hardware and software, and verified the system operation. We

show that MQTT and AWS are good technical candidates for

small IoT business applications.

Index Terms— AWS, IoT, MQTT, Smart Home

I. INTRODUCTION

Even three or four years ago we did not dream that the IoT

would come into our life so early. From GE to Belkin to Home

Depot, tons of products and whole ecosystems want to help you

control your home via a single iOS or Android app [1].

Now-a-days the IoT is becoming a novel paradigm that is

rapidly gaining business area in the modern wireless

telecommunications with the integration of several

technologies and communications solutions.

MQTT is a publish/subscribe message exchange protocol

developed by IBM [2]. The MQTT system consists of MQTT

broker and client. The MQTT broker is a message exchange

platform that enables the message producer client to publish

messages with a message identifier Topic. When the message

consumer client subscribes to the Topic, the MQTT broker

delivers the topic messages. Recently, MQTT has been adopted

as the message transfer binding protocol in oneM2M IoT

international standards [3].

AWS offers a suite of cloud-computing services that make

up an on-demand computing platform. As of 2016 AWS has

more than 70 services, spanning a wide range, including

compute, storage, networking, database, analytics, application

services, deployment, management, mobile, developer tools

and tools for the Internet of things. AWS is very attractive for

small IoT business applications because they provide large

computing capacity quicker and cheaper than a client company

building an actual physical server farm.

In this paper we demonstrate that MQTT and AWS are good

technical candidates for small IoT business applications. We

created a smart home scenario and designed IoT massages

satisfying the scenario requirements.

We also implemented the smart some system in hardware

and software and verified the system operation. We build an

MQTT broker on AWS. The MQTT broker has been utilized

as a platform to provide the IoT services which monitor and

control room temperatures, and senses, alarms, and suppress

fire. Arduino was used as the IoT end device connecting a room

temperature sensor, a fire sensor, and fire alarm, an air

conditioner, and a sprinkler actuators to the platform via Wi-Fi

channel. We used the Gluon mobile API for the development

of mobile application. Application provides indoor temperature

monitoring, desired temperature setting, fire alarm reception

and suppression functions.

II. MQTT PROTOCOL

Fig. 1. MQTT protocol operation

Fig. 1 shows the MQTT protocol operation. The basic

concepts of it is publish/subscribe and client/broker and its

basic functionality is connect, publish, and subscribe. Also it

has several good features like quality of service, retained

messages, persistent session, last will and testament and SYS

topics. MQTT decouples the space of publisher and subscriber.

So they just have to know hostname/ip and port of the MQTT

decouples the space of publisher and subscriber. So they just

have to know hostname/ip and port of the broker in order to

publish/subscribe to messages. The broker is able to store

messages for clients that are not online. MQTT is also able to

decouple the synchronization, because most client libraries are

working asynchronously and are based on callbacks or similar

model. So it won’t block other tasks while waiting for a

message or publishing a message. But some libraries have

synchronous APIs in order to wait for a certain message.

MQTT is really the essence of pub/sub when using a client

library and that makes it a light-weight protocol for small and

constrained devices.

III. SMART HOME IOT DESIGN

1) Scenario:

In the section we describe our smart home IoT scenario for

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-4, April 2018

119

the reference implementation with MQTT on AWS.

 In the room, the cooling/heating unit (air conditioner) and

the temperature sensor are interlocked so that the room

temperature can be controlled automatically. Fire alarm and

suppression are possible by installing fire detection sensor and

sprinkler. In the smartphone app, the room temperature can be

monitored remotely regardless of location. If a desired

temperature is set on the app, the app sends the target value via

IoT platform to the temperature control system. Then the local

end device controls the air conditioner so that the desired

temperature is maintained.

Flame sensor, fire alarm, and sprinkler are also interlocked

to provide automatic fire detection, alarming, and suppression

service. When the flame sensor detects the fire, the IoT device

automatically alarms the fire event, activates the sprinkler to

suppress the fire, and sends fire alarm message to smartphone

app via IoT platform

The user of the app checks the fire suppression message and

checks the operation status of the sprinkler and forcibly

operates the sprinkler when not in operation.

2) IoT message design based on MQTT protocol:

In the section we describe IoT message design based on

MQTT protocol so as to suitable for the implementation of the

above-mentioned smart home IoT scenario.

The Table-1 shows the IoT message for MQTT protocol

operation.

TABLE I

IOT MESSAGE FOR MQTT PROTOCOL OPERATION

IoT

Message

MQTT

Topic
Publisher Subscriber

Subscriber's

Action

Current

Tempera-

ture

Temperature/

Current

Temperature

Sensor App Display

Desired

Temperature

Temperature/

Desired
App

Air

Conditioner

Temp

Control

Fire

Detection

Fire/

Detected

Flame

Sensor
App Pop Up

Sprinkler

Request

Sprinkler/

StReq
App Sprinkler

Read

Status

Sprinkler

Reply

Sprinkler/

StRep
Sprinkler App

Send

Message

Sprinkler

Start

Sprinkler/

Start
App Sprinkler Activate

System

Request

System/

StReq
App Devices

Send

Message

System

Reply

System/

StRep
Devices App Display

The IoT messages are for room temperature control, fire

detection/suppression, and system status monitoring. For each

message the name of MQTT topic was given, who will publish

out and subscribe in was identified, and the subscriber’s action

after receiving the message was also defined.

The Fig. 2 shows the IoT message exchange procedure

according to MQTT protocol for room temperature

monitoring/controlling, fire sensing/alarming/suppression, and

system status checking.

(a) Temperature control

(b) Fire detection/suppression

(c) System checking

Fig. 2. IoT message exchange procedure

3) Smart home IoT design:

Fig. 3. Smart home IoT system architecture

The Fig. 3, shows the smart home IoT architecture that

implements automatic temperature control and fire

alarm/suppression. Three Arduino’s are used. Two were used

for temperature sensor and air conditioner respectively and one

was used for fire alarm flame sensor, and sprinkler. Arduino’s

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-4, April 2018

120

are equipped with Wi-Fi module to communicate with MQTT

broker. MQTT broker will be installed on AWS. Smart phone

application will monitor the room temperature, control

temperature, get fire alarm message on fire event, check

sprinkler status, and active the sprinkler when not in action on

fire event.

IV. IMPLEMENTATION

1) Implementing the MQTT Broker in AWS:

The Fig. 4 shows the MQTT Broker architecture built on

AWS. The implementation procedures are as follow:

First, create an AWS account. Second, create a server using

Elastic Compute Cloud (EC2) known as the most basic and

widely used infrastructure in AWS, which provides a virtual

server connected to the Internet. AWS automatically assigned

public IP address 52.78.97.212 to our server. If customers want

a permanent public IP address, they should have to pay cost.

Otherwise, for every start of the server, new public IP address

are assigned.

Third, connect to the public IP of the server with virtual

terminal program such as putty and upload the MQTT broker

to create IoT platform on AWS server.

Several types of brokers are available. This paper used a

broker called Mosquitto [5]. The reasons why we use this

broker are that it is an open source, easy to install and suitable

for IoT.

For the easy access to the server, we subscribed in a

commercial DNS service and mapped the server IP address to

the URL of iot warrior.mynimbus.xyz. However, since the

public IP address of AWS changes every time the server is

rebooted, the new IP address must be re-mapped to the URL.

The Broker receives the message on TCP port 1883. MQTT

Topic are commonly available as "IoT Warrior / MQTT Topic"

at tcp: //Iotwarrior.mynimbus.xyz:1883.

Fig. 4. MQTT Broker Architecture Built on AWS

2) Software implementing in smart phone app and end device:

Because the smartphone app, Broker, and Arduino require

bidirectional communication, MQTT server and client

functions must be implemented in each device. Followings are

development tools and libraries for Arduino end device and

Android smart phone.

A) Arduino part implementation:

 Development Tools and Languages:

Arduino IDE[6], C/C++ [7]

 Libraries :

 PubSubClient [7], WiFi Esp [9],

 LiquidCrystal_I2C [10],

 DHT_sensor_library [11]

 (B) App part implementation:

 Development Tools and Language :

 Gluon Plugin [12] in Netbeans [13]

 JAVA Libraries :

 charm-common-3.0.0 [14]

 paho.client.mqttv3 [15]

(a) Room temperature monitoring

(b) Desired temperature setting

(c) System Checking

(d) Received fire alarm

Fig. 5. Smart phone application for smart home IoT service.

The Fig. 5 shows screen shots of the smart phone application

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-4, April 2018

121

for smart home IoT service. From (a) to (d) each figure shows

room temperature monitoring, desired temperature setting,

system checking, fire alarm message reception.

3) Hardware implementation for smart home IoT service:

The Fig. 6 shows an hardware implementation for smart

home IoT service. The Arduino’s of this hardware have Wi-Fi

module to connect to MQTT broker in AWS. Smart Phone App

also connect to the broker via Wi-Fi channel or 4G/5G web

service. Because the broker has the public IP address, the

mobile app can access to this hardware with the help of the

broker from anywhere and anytime.

Fig. 6. Smart home hardware

4) System Experiments:

We made experiments on our smart home system.

A short video source is available on YouTube URL

https://youtu.be/tHoDcmvezqA.

V. CONCLUSION

In this paper, we created a smart home scenario and designed

IoT massages satisfying the scenario requirements. We also

implemented the smart some system in hardware and software

and verified the system operation. MQTT broker has been built

in AWS. Utilized it as a smart home IoT platform to build a

room temperature control and fire alarm/suppression system.

With AWS, global access to IoT services is possible and server

maintenance difficulties can be eliminated. In particular, global

access is possible without separately providing public IP,

making it well suited for individual or small business IoT

service establishment. Based on the results of this study, we

can conclude that MQTT and AWS are good technical

candidates for small IoT business applications. Future research

subjects are implementation of security services such as

authentication and authorization, and extension of research

area to oneM2M platform implementation.

VI. FUTURE WORK

The effective utilization of a publish/subscribe architecture

of MQTT in the field of warehouse automation. The system

proposed can be effectively utilized in the public warehouses

wherein each of utilizes more bandwidth and has high latency

than COAP when amount of application data being transferred

is considered. On the other hand when it comes to the features

such as architecture, ease of implementation, data integrity and

security TCP based MQTT protocol always proves to be more

efficient to use than COAP. The threat model for a typical IoT

environment with particular emphasis on MQTT-based IoT

deployments. We conducted experiments to quantify the

impact of DoS attacks against the MQTT broker, with obtained

results providing us with insight into the problem domain. As

part of our future work we shall assess the impact of other

malicious attacks on IoT devices and MQTT message brokers.

In addition, the performance of a load-balanced MQTT broker

environment during different attacks needs to be evaluated.

There is an urgent need to protect the IoT devices from

malicious attacks and misuse which could impede the evolution

of IoT as a reliable and secure paradigm. New research

initiatives are required to detect attacks that target IoT devices

and characterise their behaviour. Such initiatives will help

build effective solutions that will mitigate and thwart such

attacks.

A conclusion section is not required. Although a conclusion

may review the main points of the paper, do not replicate the

abstract as the conclusion. A conclusion might elaborate on the

importance of the work or suggest applications and extensions.

REFERENCES

[1] L Atzori, A. Iera and G. Morabito, “The internet of things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] MQTT Web page. Source: http://mqtt.org.

[3] oneM2M, oneM2M Release 2 specifications - TS0010, ver. 2.41, Aug.

2016.

[4] MQTT Essentials. Source: http://www.hivemq. com/mqtt-essentials/

[5] Mosquitto Web page. Source: https://mosqu itto.org/

[6] Arduino Web page. Source: https://www.arduino.cc.

[7] Arduino Language.

Source: https://www.arduino.cc/en/Reference/HomePage.

[8] Arduino Client for MQTT. Source: http://pubsubcl ient.knolleary.net/

[9] WiFiEsp. Source: https://github.com/ bportaluri/WiFiEsp

[10] LiquidCrystal_I2C.

Source: https://github.com/marc oschwartz/LiquidCrystal_I2C.

[11] DHT_sensor_library.

Source: https: //github.com/adafruit/DHT-sensor-library

[12] NetBeans IDE. Source: https://netbeans.org/

[13] Gluon Mobile. Source: http://docs.gluonhq. com/charm/3.0.0/

[14] charm 3.0.0 API.

Source: http://docs.gluonhq. com/charm/javadoc/3.0.0/.

[15] Eclipse paho. Source: https://eclipse.org/paho/

