3D Printing and It's Applications

Prabhat Sahu¹, Vivek Kumar Soni²

¹Student, Electrical and Electronics Engg. Department, PSIT, Kanpur, India ²Assistant Professor, Electrical and Electronics Engg. Department, PSIT, Kanpur, India

Abstract—This is a research paper on 3Dimentionalimentional printing which has become a notable topic in today's technological scenario. In this paper, we will look at additive manufacturing or 3Dimentionalimentional printing. We will define what we mean by this term and what is so significant about it. We will delve a bit into the history. Then we shall see about the process of 3Dimentionalimentional printing and the materials used in the manufacture of 3Dimentionalimentional printed objects. We shall observe the numerous applications it is being out to use today. Finally the future potential of this technology is outlined in this paper.

Index Terms— contour craft, 3-Dimentional printing, 3-Dimentional printers, polymers

I. INTRODUCTION

3-Dimentional printing, additionally referred to as additive manufacturing, may be a method of basically making a threedimensional object from a package model. The thing may be of just about any form. Within the additive method, an object to be written is built from the base-up by in turn adding it to layers of the development material. The additive method may be contrasted with the subtractive process, where material is removed from a block by methods such as sculpting or drilling. The main material utilized in the development of 3Dimentional objects is plastic, though recently, there has additionally been a slew of innovation toward using alternative materials like metals of various sorts and additionally organic matter like carbon and its varied derivatives. However, the credit for the first 3Dimentionalimentional printer generally goes to Charles Hull, who in 1984 designed it while working for the company he founded, 3Dimentionalimentional Systems Corp. Charles a Hull was a pioneer of the solid imaging process known as stereo lithography and the STL file format which is still the most widely used format used today in 3Dimentional printing. He is also regarded to have started commercial rapid prototyping that was concurrent with his development of 3-Dimentional printing. He used photopolymers heated by UV light to achieve the melting and solidification effect.

II. PRINCIPLES OF 3-DIMENTIONAL PRINTING

The main principle of 3Dimentional printing is stereo lithography, outlined by Charles Hull patent as "a system for generating three-dimensional objects by making a cross-sectional pattern of the object to be formed".

This means that any 3-Dimentional object generated using a 3-Dimentional drawing software is first split into layers and

these layers are then successively printed by the machine on top if one another. Step one of 3Dimentional printing is the production of a 3Dimentional printable model. This model is produced using a computer aided design software or via a 3Dimentional scanner. A real life object can be set to be 3Dimentional printed by scanning it to get a 3Dimentional model that is realistically within the bounds of the 3Dimentional printer's capability. Once the STL file is generated, then the object is ready to be printed. After the designing step comes the printing part.

The converted STL file is fed into the printer and according to the layers we have obtained, the machine laying the plastic out layer by layer. The material need not be plastic but it can be anything ranging from liquid, powder, paper or sheet material. The layers are automatically used to get the final shape. The object may take anywhere from several minutes to several hours to complete depending on the size and complexity of the model and also on the type of machine used. Some additive manufacturing techniques are capable of using multiple materials to construct parts. They can also use multiple color combinations simultaneously. These supports can be dissolved in water when the model is printed. The easiest way to prepare your document is to use this document as a template and simply type your text into it.

III. 3-DIMENTIONAL PRINTERS

Although most 3Dimentional printers are expensive, recently there has been a steep decline in the prices of 3Dimentional printers. There are many affordable 3Dimentional printers that are available for much less than they are worth, if we take all its production capabilities into account. Companies have also realized the potential of a consumer market for 3Dimentional printers and as such have been aggressively courting enthusiasts with cheaper and better models. There are many communities formed around these enthusiast groups which are active on the internet set up to share projects and ideas and new possibilities.

IV. UNCONVENTIONAL APPLICATIONS OF 3-DIMENTIONAL PRINTING

3-Dimentional printing has a wide variety of uses and it can also be put to some unconventional uses. People have tried to make stuff that not only eschews the usual plastic used to make the objects but also makes use of non-traditional and commonly unavailable material to print objects. Scientists have successfully been able to print ears, skin, kidney, blood vessels and bones using 3Dimentional printers. Instead on typical

plastic, a gel-like substance made of cells is used. For bones, a ceramic powder is used instead. In the future, every patient will have their own matching set of skin for a graft, a bone fragment or an organ. Already, 3-Dimentional printers are capable of printing prosthetic limbs for people with disabilities. The biggest challenge is the challenge of printing a fully beating human heart that works just as well as a natural one. Of course, to keep them alive must prove daunting. In the future, we may live in houses that have been 3-Dimentional printed. A researcher at University of Southern California claims to have designed an enormous 3-Dimentional printer that is capable of printing a whole house in just a day. This conceptual model uses concrete as its base element in order to replicate computer programs of houses. In order to ensure that the house is compatible with plumbing and electrical, it uses a layered fabrication tech called "Contour Craft". A printed house could have far-reaching implications for low-income housing, disaster recovery applications such as creating models of plastic that can be used as a sample or a prototype of a largerscale version of itself. NASA has been developing technologies to print wood from the printers using 3Dimentionalimentional bio printing technology. The basic theory is that the printer will lay out living cells in a specific manner upon a gel. This gel stimulates the cells to start excreting wood. One application could be that astronauts could bring wood to space without actually having to carry any of it.

Modern Meadow, a company that lies at the intersection of traditional farming and modern cutting-edge 3-Dimentional printing technology, is a company that believes we can sustainably 3-Dimentional print food. According to the company, traditional slaughtering of animal to obtain animal by-products such as meat or leather is unsustainable and that we might be better off trying to 3Dimentionalimentional print our meat. The industry also thinks that there will be a high demand for that sort of meat in the future. Though it may sound like something farfetched, the company has patented techniques to make it happen.

V. CONCLUSION

More research is still needed to make it happen but the company evidently has the brains and research to figure it out. NASA has also jumped on the 3Dimentional printed food bandwagon and are said to be extensively funding research in this area in order to feed astronauts in space. In fact, we already can print chocolate confectioneries and desserts from a special printer invented recently called Choc edge. Also, Hershey and 3-Dimentional Systems have partnered to presumably create all kinds of printable food items. Should the company replace factory workers with 3Dimentional printers, it might be able to streamline the process of manufacturing. Speaking of astronauts, by far the most ambitious of these 3-Dimentional printed futures is where we set up an entire moon base by printing out the construction blocks to be used to construct the base. Researchers have theorized that in the absence of plastic, we might be able to utilize the abundantly available moon soil to print out building blocks to form a lunar habitat for humans. Researchers at the European Space Agency have been able to create a 1.5 ton building block make of synthetic lunar soil. The result was a sturdy yet light material that the astronauts can assemble themselves. It should be noted that, so far, these technologies have been tested only on Earth.

REFERENCES

- [1] http://www.theengineer.co.uk/in-depth/the-big-story/the-rise-of-additive-manufacturing/1002560.article
- [2] http://www.redorbit.com/education/reference_library/general-2/historyof/1112953506/the-history-of-3D-printing
- [3] http://readwrite.com/2014/02/17/future-of-3D-printing-what-can-we-3D-print#awesm=~ozykT14wlGsiL5
- [4] http://whatsnext.blogs.cnn.com/2013/07/31/study-at-home-3-d-printingcould-save-consumers-thousands/
- [5] http://abcnews.go.com/Technology/story?id=1603783&page=1
- [6] http://reprap.org