
International Journal of Research in Engineering, Science and Management  

Volume-1, Issue-9, September-2018 

www.ijresm.com | ISSN (Online): 2581-5782     

 

291 

 

Abstract—In real life if the things are arranged in order than its 

easy to access, same way in computer terms if data is in proper 

order than its easy to refer in future. Sorting process help we to 

arrange data easily based on types of data. In this paper various 

sorting technology are discussed through algorithm, also 

comparison chart of time complexity of various algorithm is 

discussed for better understanding. Sorting is the operation 

performed to arrange the records of a table or list in some order 

according to some specific ordering criterion. Sorting is performed 

according to some key value of each record. Same data is to be 

sorted through different sorting technics for better understanding. 

In computer science, a sorting algorithm is an efficient algorithm 

which perform an important task that puts elements of a list in a 

certain order or arrange a collection of items into a particular 

order. Sorting data has been developed to arrange the array values 

in various ways for a database.     

 
Index Terms—Bubble Sort, Insertion Sort, Merge Sort Selection 

Sort and Quick Sort. 

I. INTRODUCTION 

Arranging the data in ascending or descending order is 

sorting.  When humans realized the importance of searching 

quickly sorting came into picture. The importance of sorting 

lies in the fact that data searching can be optimized to a very 

high level, if data is stored in a sorted manner. Sorting is also 

used to represent data in more readable formats. There are many 

different techniques available for sorting, differentiated by their 

efficiency and space requirements. There are so many things in 

our real life that we need to search for, like a particular record 

in database, roll numbers in merit list, a particular telephone 

number in telephone directory, a particular page in a book etc. 

All this would have been a mess if the data was kept unordered 

and unsorted, but fortunately the concept of sorting came into 

existence, making it easier for everyone to arrange data in an 

order, hence making it easier to search. If you ask me, how I 

will arrange a deck of shuffled cards in order, I would say, I will 

start by checking every card, and making the deck as I move on. 

It can take me hours to arrange the deck in order, but that's how 

I will do it. Thank god, computers don't work like this. Since 

the beginning of the programming age, computer scientists have 

been working on solving the problem of sorting by coming up 

with various different algorithms to sort data. The two main 

criteria’s to judge which algorithm is better than the other have 

been: Time taken to sort the given data and Memory Space 

required to do so. There are many different techniques available 

for sorting, differentiated by their efficiency and space 

requirements. For instance, sorting will order an array of  

 

numbers from lowest to highest or from highest to lowest, or 

arrange an array of strings into alphabetical order. Typically, it 

sorts an array into increasing or decreasing order. Most simple 

sorting algorithms involve two steps which are compare two 

items and swap two items or copy one item. It continues 

executing over and over until the data is sorted [1]. 

II. SORTING ALGORITHMS 

A. Insertion Sort 

Insertion sort is an in-place comparison-based sorting 

algorithm. Here, a sub-list is maintained which is always sorted. 

For example, the lower part of an array is maintained to be 

sorted. An element which is to be 'inserted in this sorted sub-

list, has to find its appropriate place and then it has to be inserted 

there. Hence the name, insertion sort. The array is searched 

sequentially and unsorted items are moved and inserted into the 

sorted sub-list (in the same array). This algorithm is not suitable 

for large data sets as its average and worst case complexity are 

of Ο (n2), where n is the number of items.  

The main idea of insertion sort is [2] 

 Start by considering the first two elements of the array 

data. If found out of order, swap them 

 Consider the third element; insert it into the proper 

position among the first three elements. 

 Consider the fourth element; insert it into the proper 

position among the first four elements and continue 

until array is sorted.  

 

Algorithm: 

Step 1 − If it is the first element, it is already sorted. Return 1; 

Step 2 − Pick next element 

Step 3 − Compare with all elements in the sorted sub-list 

Step 4 – Shift all the elements in the sorted sub-list that is 

greater than the value to be sorted 

Step 5 − Insert the value 

Step 6 − Repeat until list is sorted 

B. Selection Sort 

Selection sort is a simple sorting algorithm. This sorting 

algorithm is an in-place comparison-based algorithm in which 

the list is divided into two parts, the sorted part at the left end 

and the unsorted part at the right end. Initially, the sorted part is 

empty and the unsorted part is the entire list. The smallest 

element is selected from the unsorted array and swapped with 

the leftmost element, and that element becomes a part of the 

sorted array. This process continues moving unsorted array 

A Review on Various Sorting Algorithms 

Rimple Patel 

Lecturer, Department of Computer Engineering, S.B.Polytechnic, Vadodara, India 



International Journal of Research in Engineering, Science and Management  

Volume-1, Issue-9, September-2018 

www.ijresm.com | ISSN (Online): 2581-5782     

 

292 

boundary by one element to the right. This algorithm is not 

suitable for large data sets as its average and worst case 

complexities are of Ο(n2), where n is the number of items.  

The main idea of selection sort algorithm is given by  

 Find the smallest element in the data list.  

 Put this element at first position of list.  

 Find the next smallest element in the list.  

 Place at the second position of the list and continue 

until the whole data items are sorted.[2] 

 

Algorithm: 

Step 1 − Set MIN to location 0 

Step 2 − Search the minimum element in the list 

Step 3 − Swap with value at location MIN 

Step 4 − Increment MIN to point to next element 

Step 5 − Repeat until list is sorted 

C. Merge Sort 

Merge sort is a sorting technique based on divide and 

conquer technique. With worst-case time complexity being Ο(n 

log n), it is one of the most respected algorithms. Merge sort 

first divides the array into equal halves and then combines them 

in a sorted manner.  

The merge sort algorithm is work as under.  
 Split array A from middle into two parts of length n/2.  

 Sorts each part calling Merge Sort algorithm 

recursively.   
 Merge the two sorting parts into a single sorted list.  

 

Algorithm: 

Step 1 − if it is only one element in the list  

               It is already sorted, return. 

Step 2 − divide the list recursively into two halves  

               Until it can no more be divided. 

Step 3 − merge the smaller lists into new list in  

              Sorted order. 

D. Quick Sort 

Quick sort is a highly efficient sorting algorithm and is based 

on partitioning of array of data into smaller arrays. A large array 

is partitioned into two arrays one of which holds values smaller 

than the specified value, say pivot, based on which the partition 

is made and another array holds values greater than the pivot 

value. Quick sort partitions an array and then calls itself 

recursively twice to sort the two resulting sub arrays. This 

algorithm is quite efficient for large-sized data sets as its 

average and worst case complexity are of Ο (n2), where n is the 

number of items. 

The partition algorithm works as follows  
 A[p] = x is the pivot value.   
 A [p…q - 1] contains elements less than x.   
 A [q + 1…s - 1] contains the element which are greater 

than or equal to x.  

 A[s...r] contains elements which are currently 

unknown 

Algorithm: 

Step 1 − Choose the highest index value has pivot 

Step 2 − Take two variables to point left and right of the list 

excluding pivot 

Step 3 − left points to the low index 

Step 4 − right points to the high 

Step 5 − while value at left is less than pivot move right 

Step 6 − while value at right is greater than pivot move left 

Step 7 − if both step 5 and step 6 does not match Swap left and 

right 

Step 8 − if left ≥ right, the point where they met is new pivot 

E. Bubble Sort 

Bubble sort is a simple sorting algorithm. This sorting 

algorithm is comparison-based algorithm in which each pair of 

adjacent elements is compared and the elements are swapped if 

they are not in order. This algorithm is not suitable for large 

data sets as its average and worst case complexity are of Ο(n2) 

where n is the number of items.  

The steps in the bubble sort can be described as below 

 Exchange neighboring items until the largest item 

reaches the end of the array.  

 Repeat the above step for the rest of the array.  

 

Algorithm: 

 

begin BubbleSort(list) 

 

   for all elements of list 

      if list[i] > list[i+1] 

         swap(list[i], list[i+1]) 

      end if 

   end for 

    

   return list 

    

end BubbleSort 

III. COMPARISON AMONG ALGORITHMS 

In computer science, best, worst, and average cases of a 

given algorithm express what the resource usage is at least, at 

most and on average, respectively. Usually the resource being 

considered is running time, i.e. time complexity, but it could 

also be memory or other resource. In real-time computing, 

the worst-case execution time is often of particular concern 

since it is important to know how much time might be needed in 

the worst case to guarantee that the algorithm will always finish 

on time [3]. 

TABLE I 

COMPARISON TABLE FOR WORST CASE COMPLEXITY 

Algorithm Time Complexity Space Complexity 

Quick Sort O(n^2) O(log(n)) 

Merge Sort O(n log(n)) O(n) 

Bubble Sort O(n^2) O(1) 

Insertion Sort O(n^2) O(1) 

Selection Sort O(n^2) O(1) 

 

 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Worst-case_execution_time


International Journal of Research in Engineering, Science and Management  

Volume-1, Issue-9, September-2018 

www.ijresm.com | ISSN (Online): 2581-5782     

 

293 

IV. CONCLUSION 

In this paper, I have discussed well known sorting algorithms, 

depending on the type and size of data different algorithms are 

to be selected and compared for running time of their 

algorithms purely as a mathematical entity and tried to analyze 

as a generic point of view. The analysis of these algorithms are 

based on the same data and on the same computer. It has been 

shown that gnome sort algorithm is the quickest one for already 

sorted data but selection sort is quicker than gnome and bubble 

in unsorted data. Bubble sort and gnome sort swap the elements 

if required. In selection sort, however, it continues sorting even 

if the elements are already sorted. Doing more comparison 

between more different sorting algorithms is required since no 

specific algorithm that can solve any problem in absolute. The 

results show that Quick sort is efficient for both small and large 

integers. Quick sort is significantly faster in practice than other 

O(n log n) algorithms. In terms of swapping, the Bubble sort 

performs the greatest number of swaps because each element 

will only be compared to adjacent elements and exchanged if 

they are out of order. Insertion Sort sorts small array fast, but 

big array very slowly. 

REFERENCES 

[1] www.cse.iitk.ac.in/users/cs300/2014/home/~rahume/cs300A/techpaper-

review/5A.pdf 

[2] T. H. Cormen, C. E. Lieserson, R. L. Rivest and S. Clifford, “Introduction 

to Algorith”, 3rd ed., The MIT Press Cambridge, Massachusetts London, 

England 2009. 

[3] https://en.wikipedia.org/wiki/Best,_worst_and_average_case 

[4] Kazim Ali,International Journal of Advanced Research in Computer 

Science, 8 (1), Jan-Feb 2017,277-280   

[5] Chhajed. N, U. Imran , Simarjeet. S., B., A Comparison Based Analysis 

of Four Different Types of Sorting Algorithms in Data Structures with 

Their Performances, International Journal of Advanced Research in 

Computer Science and Software Engineering, Volume 3, Issue 2, 

February 2013. 

 

http://www.cse.iitk.ac.in/users/cs300/2014/home/~rahume/cs300A/techpaper-review/5A.pdf
http://www.cse.iitk.ac.in/users/cs300/2014/home/~rahume/cs300A/techpaper-review/5A.pdf
https://en.wikipedia.org/wiki/Best,_worst_and_average_case

