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Abstract—In this paper, we introduce some rectangular divisor 

cordial graphs. Further, we can prove that the graphs obtained by 

the identification of some vertices of a divisor cordial graphs to 

certain notebook graphs are divisor cordial. 

 
Index Terms—Divisor Cordial graph, Vertices, edges, notebook. 

I. INTRODUCTION 

Number Theory is a fascinating subject in mathematics. It 

has so many interesting concepts. The concepts of primality and 

divisibility play an important role in Number Theory [1].  

 

Definition-1: 

Let 𝐺 = (𝑉, 𝐸) be the function of f:v is denoted by the 

set  {0,1} with an each edge xy, is ascribed by the label 1 if f(x) 

divides f(y) or f(y) divides f(x) and 0 otherwise, then the number 

of edges labeled with 0 and the number of edges labeled with 1 

differ by at most 1.  

For each edge 𝑥𝑦, assign the label 1 if either [𝑓 (𝑥)]2|𝑓 (𝑦) 

or [𝑓 (𝑦)]2|𝑓 (𝑥) and the label 0 otherwise. 𝑓 is called a 

rectangular divisor cordial labeling if |𝑒𝑓(0) − 𝑒𝑓(1)| ≤ 1.   A 

graph with a rectangle square divisor cordial labeling is called 

a rectangular divisor cordial graph. 

Definition-1.1 

One edge union of cycles having same length is called a 

notebook. By common, the edge is said to be the base of the 

notebook. If we assume t copies of cycles of length m then the 

notebook is denoted by Nm
(t . Note that Nm

(t) has (m − 2)t + 2 

vertices and (m − 1) + 1 edges.  

II. MATHEMATICAL FORMULATION 

Theorem: 2.1  

A notebook N with rectangular pages is divisor cordial. 

 

Proof: 

Let N be the notebook with rectangular pages. Note that it has 

2t +2 vertices and 3t +1 edges. Label the vertices of common 

edge by 1 and 2. Then label the vertices of the edges which are 

parallel to common edge as given below. 

 

Example: 2.2  

Let us consider the notebook N with 2 rectangular pages. Note 

that it has 6 vertices and 7 edges. 

Here, we have 𝑒𝑓(0) = 3 and 

                       

  𝑒𝑓(1)= 4. 

 
Fig. 1.  Notebook has 2 rectangular pages 

 

In the first page, label the numbers 4 and 3, second page 5 

and 6,. Since 1 divides all the integers it contributes 

 t+1 to 𝑒𝑓(1), 2 divides all the even integers it contributes  
𝑡

2
 to each 𝑒𝑓(0) and 𝑒𝑓(1).  

When t is even, 

               𝑒𝑓(0)= 
𝑡+1

2
 and 

               𝑒𝑓(1)= 
𝑡−1

2
. 

When t is odd, m  ≠ m+ 1 for any integer m > 1, the parallel 

edges are assinged t to 𝑒𝑓(0).  

Consequently,  

 Case (1) if t is even,  

               𝑒𝑓(0)= 
3𝑡

2
and 

               𝑒𝑓(1)= 
3𝑡

2
 + 1 and  

 Case (2) if t is odd, then 

               𝑒𝑓(0) = 
3𝑡+1

2
  and 

               𝑒𝑓(1)= 
3𝑡+1

2
   

Thus, |𝑒𝑓(0)− 𝑒𝑓(1)| ≤1. As a consequence, N shows divisor 

cordial. 

 

Corollary:2.3 

A notebook with even number of rectangular pages is divisor 

dominated cordial but not strict. 

 

Proof:  

The notebook N is divisor dominated cordial graph. If we 

interchange the labels of second page, then N becomes non 

divisor dominated cordial. 

 

Theorem: 2.4.  

Let G be a divisor cordial graph and N be the notebook with 

rectangular pages. Then GN٭ N is divisor cordial. 
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Proof: 

Let us assume G is a divisor cordial graph of order p and size 

q and the vertices labeled 1 and 2 are not adjacent. Here,  f٭ be 

the divisor.  

Let N be a notebook with t rectangular pages labeled at fN . 

Now identify the vertices labeled 1 and 2 in G to the vertices of 

common edge of N.  We already proved that GN ∗N be the 

divisor cordial. Let f be the labeling of GN ∗N. 

Case (i): if p is even. 

Since G is divisor cordial, we have 𝑒𝑓(0)٭ = 𝑒𝑓(1)٭= 
𝑡

2
 . 

Case (ii): if t is even, the vertices of the parallel edges in N 

to edge of the vertices are labeled 1 and 2 as follows. 

If n is even,   

        𝑒𝑓(0) = 
𝑚

2
 + 

3𝑡

2
 and 

        𝑒𝑓(1) = 
𝑚

2
 + 

3𝑡

2
 + 1. 

 If  t is odd, divisor dominated cordial which implies 

        𝑒𝑓(0)٭ = 
𝑚+1

2
 and  

         𝑒𝑓(1)٭ =
𝑚+1

2
 

In all cases, |𝑒𝑓(0)− 𝑒𝑓(1)| ≤ 1. So, GN ∗N.is divisor 

cordially. 

 

Example: 2.5 

Consider the following divisor cordial graph G 

 

 
Fig. 2.  Notebook has not adjacent 

It has even order and even size. Note that the vertices labeled 

1 and 2 are not adjacent. 

Now, we shall connected with the notebook N with 

rectangular pages to G shows in figure. 

 

 
Fig. 3.  Notebook with rectangular pages 

 

Here, we see that 𝑒𝑓(0) = 4 and 𝑒𝑓(1)= 4 

This example illustrates the subcase (a) of Case (i) for even 

order of G. 

Next, we shall explain the subcase (a) of Case (ii) by the 

following example. 

 

Example: 2.6 

Consider the following divisor cordial graph G of odd size. 

 

 
Fig. 4.  Notebook divisor cordial graph G of odd size 

 

Here, p = 5 and q = 4 and 𝑒𝑓(0) = 2 and 𝑒𝑓(1) = 3 

Then notebook N is attached with rectangular pages as given 

below. 

 
Fig. 5.  Notebook with rectangular pages is adjacent 

 

Here, we see that ef(0) = 4 and ef(1) = 5 

 

Theorem: 2.7: Let G be a divisor cordial graph and N be a book 

with the rectangular pages and let e be the common edge of N. 

Then G ∗G (N − e) is divisor cordial. 

 

Proof:  

Here the vertices labeled 1 and 2 in G are adjacent. 

Case (i): (a) if m is even. t is even. 

Here 𝑒𝑓(0)= 𝑒𝑓(0)= 
𝑚

2
  + 

3𝑡

2
  . 

              (b) if m is even, t is odd 

Here 𝑒𝑓(0) = 
𝑚

2
  + 

3𝑡

2
  and 𝑒𝑓(0) = 

𝑚

2
 + 

3𝑡

2
 . 

Case (ii): (a) if m is odd, t is even. 

Here |𝑒𝑓(0) − 𝑒𝑓(1))|   ≤1. 

              (b): m is odd, t is odd. 

From this, we were interchanging the labels of the vertices of 

second page of N.  

Then, we have |𝑒𝑓(0)− 𝑒𝑓(1)| ≤  1. 

Thus, in all the cases we see that G∗G (N − e) is divisor cordial. 

 

Example: 2.8  

Consider the following divisor cordial graph G.  

Here, 𝑒𝑓(0) = 2 and 𝑒𝑓(1)= 3. It is of even order and odd size. 

Note that the vertices labeled 1 and 2 are adjacent. 

However, we shall attach N− e with 3 rectangular pages to G as 

given below. 
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Fig. 6.  Notebook divisor cordial graph G of even or odd size 

 

 
Fig. 7.  Notebook with rectangular pages is adjacent 

Here, we see that 𝑒𝑓(0) = 4 and 𝑒𝑓(1)= 4 

III. CONCLUSION 

The notebook of the rectangular divisor cordial graphs is 

discussed and also, we can prove that the graphs obtained by 

the identification of some vertices of a divisor cordial graphs to 

certain notebook graphs are divisor cordial. 
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