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Abstract—In this paper, we investgate the theory of Hardy
spaces and its related theorems are discussed. The invariant
subspaces of the borel measures for hardy spaces are also proved.
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. INTRODUCTION

Let T denotes the unit circle in the complex plane and y is a
lebesgue measure on T normalized so that u(T) = 1

Let LP (T) be sequence of measurable functions on the space
T. LP(T) is also a lebesgue space with respect to measure p.

The Hardy will be defined as a closed subspace is L”(T) . In
the case of p=1 or c

For nin Z let y,, denote the function on T defined y,(z) = z™.

If we define
21

1
H’={fEL’(T):E fxndt=0 for n=1,23,...}
0

then H* is obviously a linear subspace of L'(T)
Moreover, since the set

(feLm: o [ faae=0)

is the kernel of bounded linear functional on L'(T), hence H' is
a closed subspace of L'(T) and hence a Banach space.

ForP = w
21

1
H® ={¢p € L*(T): — dxndt =0 for n
2m ),

=1,23,...}
is closed subspace of L(T).

Moreover in the case

1
{¢ € L®(T): E

In general for P=1,2,..c0

2

HP ={f € LP(T): | f(e")xn(e)dp =0 for n>0}
0

2m

dxndt = 0}

0

Hence H? is closed subspace of LP(T) and HP is Banach space.

Il. MATHEMATICAL FORMULATION

Proposition : 2.1
If @ is in L*(T), then H?is an invariant subspace for ¢, if and
only if @ isin H®.

Proof:

Let M, is the multiplication operator defined by My f = ¢f
for fin L2(T).
If MyH? is contained in H? since 1 is in H? and hence ¢ is
in H®.
Conversely,

If¢isin H®

Then ¢&.is contained in H?
Since for P = Z?LO o xjin Py
We have

2m N 2

(P)tady = )

j= "°

PXjndp =0 forn>0

Since H? is the closure of £., we have ¢pH? contained in H?
which completes the proof.

Corollary: 2.2
The space H® is an algebra.
Proof:
If p and ¢ are in H®
Then My, H? = M,(MyH?) € M,H? c H?
By the above proposition
H? is invariant subspace of H*then implies that i is in H®
Hence H%is an algebra.

Theorem:2.3
If u is in the space M(T) of Borel measures on T and du = 0
fornin Zthen u = 0.

Proof :

Since the linear span of the functions {x,},e, is uniformly
dense C(T) and M(T) is the dual of C(T), the measure u
represents the zero functional and hence must be the zero
measure.

Corollary:2.4
If f is a function in L(T)

Such that foznf(ei"’))(n(ei“’)d(p =0 forninz.
f=0ae.

Proof :
If we define the measure ¢ on T such that
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u(E) = f f(e®)dp
E

By hypothesis become fTo Xndu=0 forninz

Hencep=0and f = 0ae

Corollary: 2.5
If f is a real-valued function in H?, then f =o a.e for some o
inR.

Proof :
If we set = (%) fOZ"f(ei‘P)dfp
Then « is real and

f (f=)xpdp =0  for n=0

0
Since f—o is real valued; taking the complex conjugate of the
proceeding equation yields.

[ v-mde = [ -wxado=0  fornz0
0 0

Combining this with previous identity yields.
2

(f—c)xndep =0 foralln.
0
Hence f = a.e.

Corollary: 2.6
If both f and f are in H?, then f =c a.e. for some « in C.

Proof:
Apply previous corollary to the real valued functions

S(F+F) and S(f +f)/i
Given:
f and its conjugate f are in H!

=> %(f +f) and %(f + f)/i belong to H!
Let = ifoznf(eiq’)dgo then o is complex
And fozn (%(f +f)—o<))(nd<p =0 forn=0
taking complex conjugate
fozn(%(f+f—)/i—oc))ﬁd(p=0 forn=0
combining above two results
%(f+f)=o< f+f=2u=>2f=2x(if f=f)

f =xae where xeC feH

Borel Theorem: 2.7

If M is a positive Borel measure on T, then a closed subspace
M of 12 (u) satisfies y,u = if and only if there exist a Borel
subset E of T such that

= 13 = {f € P(: f(e") =0 for e € F}

Proof:
If M = L2 (u) then clearly y;u =M

Conversely, if y,u =M then it follows that M= y_ x; =
x—-1 and hence M is a reducing subspace for the operator ;1
on L?(w).Therefore if F denotes the projection on to J(, then F
commutes with Jx1

By proposition:

“If T is an operator on JE, M is closed subspace of F€and Py is
a projection on to J then M is and invariant subspace for T, if
and only if PuTPy= TP, if and only if M* is an invariant
subspace for T further, M is a reducing subspace for T if and
only if P4 T= TP4and only if M is an variant subspace for both
T and T" with M, for ¢ in C(T)

By corollary if x is a compact Hausdroff space and u is a finite
positive regular Borel measure on X, then C(X) is

W’- dense in L ()

The algebram = {My,¢ € L*(u)} is maximal abelian

Now conclude that F is of the form M, for some ¢ in L* (1)

Hence M = {f € L?(u): f(e*) = 0 fore' € E}

Theorem: 2.8

If u is a positive Borel measure on T, then a nontrivial closed
subspace M of L?(u) satisfies y; Mc M and N5 X, M= {0}
if and only if there exist a Borel function ¢ such that |¢|*du =

d¢/2n then the function v f = ¢f is u measurable for f in H?
and

0 1 2T
Il =f llof|Pdp =§f If12dg = |If112
T 0

@ has the image M of H? under the isometric i is a closed
subspace L? (). p is invariant for M,.
Since y, (Wf) = Y(x,f) then we have

Nnzo XnM = 1/)[ﬂnzo)(nH2] = {0}
Hence A is a simply invariant subspace for M, conversely

suppose M is a nontrivial closed invariant subspace for which
M,.
Nnso Xn M= {0}.

Then L=MO y, M is non trivial and M =y, MO yn.1 M
since multiplication by y, is an isometry on L2(.() therefore,
the subspace Yoo @x,L is contained in u and an easy
argument reveals

M- o ®xnl) tobe Nyso xn M and hence {0}

If @ is a unit vector in 1., then ¢ is n orthogonal to y,, M and
hence to y,o, n>0 and thus we have ¢ = (@, y,@) =
17 1912 xnclpt for n>0

We see that |¢|2dy = d‘p/zn

Suppose L has dimension greater than one and ¢? is a unit
vector in L orthogonal to ¢. In this case we have.

0= (Xn® Xm®") = [y PO An-mdht
Thus [, xdv =0

forn,m=0

forkinz
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Where dv = p@’du. Therefore p@’du = Ou a.e combining
this with that |@|?>du = |@*|?du leads to a contraction and
hence 1. is one dimensional. Thus we obtain that ¢&.is dense
and hence M= @H?hence the proof.

Beurling Theorem:2.9

A function ¢ in H* is an inner function if || = 1a.e. If T, =
M, |H?, then a nontrivial closed subspace . of H? is invariant
for T, if and only if M= @H?*for some inner function P.

Proof:

If ¢ is an inner function, then p£.is contained in H*, since
the later is an algebra and is therefore contained in H?, since
@H? is the closure of p2.

We see that pH? is a closed invariant subspace for T,
Conversely, if M is a nontrival closed invariant subspace for
T,1, then A satisfies the hypotheses of the proceeding
theorem for

du = d(p/ZH and hence there exists a measurable function ¢

such that 4 = @HZ%and |p|? d(p/zn = d<ﬂ/2n
Therefore || = 1 a.e. since 1 isin H?

We get o = @.1isin H?

Thus ¢ is an inner function.

Theorem: 2.10

If uis a positive Borel measure on T then a closed invariant
subspace JM for M,, has a unique direct sum decomposition
M=M;@M: such that each M; and Mois invariant for M,
xiM=Mand Nyso X M={0}

Proof:
If we set My= U,,50 XM then M, is a closed invariant
subspace for M, satisfying y; #=AMthe function fin A if and

only if it can be written in the form y,,g for some g in M for
each n>0.

If we set Mo=M-M;

Then function f in M is in Mo, if and only if (f,g)=0 for all
gin My
Since 0 = (f,g9) = (x1f, x19) and y, My=M;it follows that
x1f is in Mz and hence M is invariant for M,, if f is in
Npso Xn Mo, then it is in M;and hence f=0 hence the proof.

Theorem: 1.5
If f is a nonzero function in H?, thenthe set {e't € T : f(e%) =
0} has measure zero.

Proof :
SetE = {e'* € T : f(e') = 0} and define
M={g€eH?g(e?)=0 fore'€eE}
it is clear that M is a closed invariant subspace for T,,; which is
nontrival since fis in it.
By beurlings theorem there exist inner function ¢ where
o] = 1a.e . Such that M= @H?since 1 is in H? it follows
that ¢ is in M and hence that E is contained in {e €
T: g(e't) = 0}. Since |¢| = 1 a. e. Hence the measure zero.

I11. CONCLUSION

The theory of Hardy spaces and its related theorems are
discussed. The invariant subspace of the borel measures for
hardy spaces are also proved.
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