Volume-1, Issue-9, September-2018

International Journal of Research in Engineering, Science and Management 135

IJRESM www.ijresm.com | ISSN (Online): 2581-5782

Optical Character Recognition (OCR)

Cheripelli Vijay?, Attarde Gokarna?, Badade Sagar®
123student, Department of Computer Engineering, MGMCET, Navi Mumbai, India

Abstract—Aim to understand, utilize and improve the open
source Optical Character Recognizer (OCR) software, OCR opus,
to better handle some of the more complex recognition issues such
as unique language alphabets and special characters such as
mathematical symbols. We extended the functionality of OCR
opus to work with any language by creating support for UTF-8
character encoding. We also created a character and language
model for the Hungarian language. This will allow other users of
the software to perform character recognition on Hungarian input
without having to train a completely new character model

Index Terms—data mining, neural networks, natural language
programming, deep learning

I. INTRODUCTION

We are moving forward to a more digitized world. Computer
and PDA screens are replacing the traditional books and
newspapers. Also the large amount of paper archives which
requires maintenance as paper decays over time lead to the idea
of digitizing them instead of simply scanning them. This
requires recognition software that is capable in an ideal version
of reading as well as humans. Such OCR software is also
needed for reading bank checks and postal addresses.
Automating these two tasks can save many hours of human
work. OCRopus was created by Professor Tom Breuel from the
DFKI (German Research Center for Artificial Intelligence at
Kaiserslautern, Germany). Google sponsored the project on
April 09, 2007 with the goal of providing an open source OCR
system capable of performing multiple digitization functions.
The application of this software ranged from general desktop
use and simple document conversion to historical document
analysis and reading aids for visually impaired users

Il. HisTOrRY OF OCR

The idea of OCR technology has been around for a long time
and even predates electronic computers.

Fig. 1. Statistical machine design by Paul W. Handel

This is an image of the original OCR design proposed by Paul
W. Handel in 1931. He applied for a patent for a device “in
which successive comparisons are made between a character
and a character image.” A photo-electric apparatus would be
used to respond to a coincidence of a character and an image.
This means you would shine a light through a filter and, if the
light matches up with the correct character of the filter, enough
light will come back through the filter and trigger some
acceptance mechanism for the corresponding character. This
was the first documented vision of this type of technology. The
world has come a long way since this prototype.

I1l. TECHNIQUES

A. Template Matching Method

In 1956, Kelner and Glauberman used magnetic shift
registers to project two-dimensional information. The reason
for this is to reduce the complexity and make it easier to
interpret the information. A printed input character on paper is
scanned by a photo detector through a slit. The reflected light
on the input paper allows the photo detector to segment the
character by calculating the proportion of the black portion
within the slit. This proportion value is sent to a register which
converts the analog values to digital values. These samples
would then be matched to a template by taking the total sum of
the differences between each sampled value and the
corresponding template value. While this machine was not
commercialized, it gives us important insight into the
dimensionality of characters. In essence, characters are two-
dimensional, and if we want to reduce the dimension to one, we
must change the shape of the character for the machine to
recognize it.

Fig. 2.lllustration of 2-D reduction to 1-D by a slit. (a) An input numeral
“4” and a slit scanned from left to right. (b) Black area projected onto x axis,
the scanning direction of the slit

Volume-1, Issue-9, September-2018

International Journal of Research in Engineering, Science and Management 136

IJRESM www.ijresm.com | ISSN (Online): 2581-5782

B. Peephole Method

This is the simplest logical template matching method.
Pixels from different zones of the binary character are matched
to template characters. An example would be in the letter A,
where a pixel would be selected from the white hole in the
center, the black section of the stem, and then some others
outside of the letter.

Fig. 3. lllustration of the peephole method

Each template character would have its own mapping of
these zones that could be matched with the character that needs
to be recognized. The peephole method was first executed with
a program called Electronic Reading Automation in 1957.

Fig. 4. The Solartron electronic reading automaton

This was produced by Solartron Electronics Groups Ltd. and
was used on numbers printed from a cash register. It could read
120 characters per second, which was quite fast for its time, and
used 100 peepholes to distinguish characters.

C. Structured Analysis Method

It is very difficult to create a template for handwritten
characters. The variations would be too large to have an
accurate or functional template. This is where the structure
analysis method came into play. This method analyzes the
character as a structure that can be broken down into parts. The
features of these parts and the relationship between them are
then observed to determine the correct character. The issue with
this method is how to choose these features and relationships to
properly identify all of the different possible characters.
Peepholes can be viewed on a larger scale. Instead of single
pixels, we can now look at a slit or ‘stroke’ of pixels and
determine their relationship with other slits. This technique was

first proposed in 1954 with William S. Rohland’s “Character
Sensing System” patent using a single vertical scan. The
features of the slits are the number of black regions present in
each slit. This is called the cross counting technique.

Fig. 5. Extension of the peephole method to structure analysis

IV. OCRoPUS

The project was initially expected to run for three years as a
support for three Ph.D. students but was later released as
software under the Apache license. This means that the project
is now open source and free to use with the preservation of the
copyright notice and disclaimer. The major advance in the
program’s development was the incorporation of the Tesseract
character recognizer along with growing language modeling
tools. The last operational version is OCRopus 0.4.4 (alpha).

A. Language Modeling

In natural language processing, language models are
probabilistic models whose main goal is to assign a probability
to a word or a sentence. In speech recognition for example, they
are used to predict the next word given the previous ones or
revise an entire sentence and compare its likelihood against
another similar sounding sentence. For OCR systems, language
models are used in a similar fashion to determine the probability
of a generated word to occur in a sentence. This can be done in
different ways.

One way is the grammar approach, which defines the
possible links and relations between words depending on their
position in a sentence. This can help determine whether we are
expecting the next word to be a verb, adjective, noun,
conjunction, etc. and proceed to reject a word that cannot fit.
One obstacle facing this approach is long term dependencies in
languages such as English. For example, we can have sentences
like “The building that I painted collapsed” and “The building
that I painted yesterday”. In the first sentence we have two verbs
in a row. In the second we have “I painted yesterday” which is
a very weak sentence and if we do not consider the entire
context and the possibility of having long term dependencies,
this can lead to a lot of complexity. It is almost impossible to
have an exhaustive model of the entire grammar of a language.

Another language modeling method is to use the word
frequencies and this can be done with different levels of

Volume-1, Issue-9, September-2018

International Journal of Research in Engineering, Science and Management 137

IJRESM www.ijresm.com | ISSN (Online): 2581-5782

complexity. The simplest one known as a unigram model is to
use a word corpus which is generated from a set of texts in the
desired language and then each word is associated its frequency
in those texts. This information can then be used to rank the
words by their probability of appearing in that language. The
size of the word corpus can improve the accuracy but can also
increase the ambiguity when it includes extremely rare words.
For this reason there exists custom word corpora depending on
the size, the topics and the era of the text supports it was
generated from. N-gram models are an extension of unigram
models. They simply look at the probability of the occurrence
of a word following two or more other words. In practice
unigram models proved to be sufficient and there are some
trends to combine different language modeling approaches to
reach better accuracy.

B. Language Modeling Implementation

OCR opus opted for the use of weighted final transducers to
create language models. These FSTs provide a lot of advantages
such as the possibility of composing language models or
concatenating them.

The OCR opus documentation specifies that language
modeling is done within the ocrofst collection that provides
different tools and scripts for creating language models in FST
form. These scripts are written in the python programming
language that has a dedicated library for FST handling called
“pyopenfst”.

y R
2! Jusr/bin/python

while lines
line
\r o w
continve
trap[word
print

print

for entr

Fig. 6. Dictionary generation code

We decided to use and modify these scripts to create a
language model for the Hungarian Language. The ocropus-Im-
dict2linefst.py script is a fst language model generator that

takes in a dictionary with word entries and their corresponding
inverted natural logarithm probabilities to produce the
corresponding FST. The reason for using the In() operation is
to avoid underflow since the probabilities are in the 0 to 1 range.
The first step was to generate such dictionary from a word
corpus. We chose to use the “Hungarian Webcorpus” that can
be found at http://mokk.bme.hu/resources/webcorpus/ as it is
available under a permissive Open Content License. For this we
wrote a python script that can create the needed dictionary from
any word corpus from the “Hungarian Webcorpus”

This script generated the file hungDict.txt that contained the
Hungarian words along with their negative log probabilities as
shown in the screen shot below.

Fig. 7. Cost dictionary for the Hungarian language

R 4 \
N 00 /[TT
T L e 9.k4\13
2l At
o~ N\ N
Y~ 1l 00 [Bt [)
CCnagll f——>{(8)— 12 |— 14
o ||/¢\J - _A_hh)
v"/:c“; ,/3\ > \,\\;
j \ EE PV
- iR 15
O N s AT
y —
N anie il \10 [
\ \ = /
Ny /
_ N N ee
- P ’¥hh LY 7\ .
- \‘”A\\u u/s ss
L .

Fig. 8. Sample portion of an English language model FST

The next step was to use the ocropus-Im-dict2linefst script to
generate the corresponding FST to this Hungarian dictionary.
When trying to run this script we immediately faced the issue
of not being able to process all Hungarian characters. The
reason for this is that the script was initially written to support

Volume-1, Issue-9, September-2018

L]

IJRESM

the Latin-2 encoding that does not have the capability of
representing letters with accents; a necessary feature in the
Hungarian Language.

To solve this problem we had to change the script to read the
Hungarian dictionary in the UTF-8 encoding and make the
appropriate changes in the FST creation pipeline. This lead us
to refine the Add String() method in the pyopen fst library
which is now able to accept any UF8 encoded character.

Finally after creating our language model FST, we
introduced it into the OCR opus pipeline.

This picked out errors and in coherencies of the raw output
from the character model recognition step.

The output of our Hungarian language model shows a
significant improvement in accuracy. The mistakes that exist
seemed to be related to segmentation errors rather than
inconsistencies in our character and language model.

V. USING oF OCROPUS SOFTWARE

The code base for OCR opus has gone through many
revisions in the past few years and lacked sufficient updates to
their documentation. This particular revision was meant to
consolidate many of the OCR steps into simpler, concise
functions. In the process, some less useful functions remained
in the code base and the useful ones were not marked as so. This
made our initial use of this software challenging. To alleviate
some of the challenges with this revision, we created a step-by-
step guide starting from the installation of OCR opus and
ending with text files, character models, and language models.
This also includes some first-hand experience with errors and
elapsed time for some of the more CPU intensive commands.

Note: Anything bolded in the following sections is a
command that can be run in a Linux terminal.

VI. RESULT

After successfully creating our Hungarian character and
language models, we assessed the accuracy of the OCR opus
software. We compared the results of our models versus the
default English models on a Hungarian algebra textbook written
in 1977 by Laszl6 Fuchs. We were able to successfully
recognize Hungarian accented characters and increase the
overall accuracy. We used a character based approach to assess
the accuracy and increase the rate of correct recognition by 8%.
The original accuracy with the English character model was

International Journal of Research in Engineering, Science and Management 138

www.ijresm.com | ISSN (Online): 2581-5782

86% on a sample of 1700 characters and we increased this to
93.5% with our Hungarian character model. We manually
calculated the accuracy because the ground truth data for this
text did not exist in digital form. From our tests, we have
concluded that our character and language model yield
significantly better results than the default English models.

VII. CONCLUSION

The goal of OCR opus is to provide an accessible, flexible, and
simple tool to preform optical character recognition. In its
current state, it is not the most user friendly utility and still has
many kinks to work out. This is all understandable because it is
in an alpha stage of development, and will require some more
attention before an official release. OCR opus does an amazing
job pre-processing and segmenting images and allows for many
fine adjustments to fulfill a variety of user needs. It is how just
a matter of reorganizing and optimizing the code to create a user
friendly experience. With time, we believe OCR opus will be
one of leading names in optical character recognition software.

REFERENCES

[1] Hyvérinen, Aapo, and Erkki Oja. "Algorithms and Applications."
Independent Component Analysis (2000): 1-31. Web. Jan.-Apr. 2012.

[2] Mori, Shunji, Ching Y. Suen, and Kazuhiko Yamamoto. Historical
Review of OCR Research and Development. Tech. no. 0018-9219. Vol.
80. IEEE, 1992. Print. Proceedings of the IEEE.

[3] Holley, Rose. "How Good Can It Get? Analysing and Improving OCR
Accuracy in Large Scale Historic Newspaper Digitisation Programs." D-
Lib Magazine. Web. 28 Mar. 2012.
<http://www.dlib.org/dlib/march09/holley/03holley.html>.

[4] Breuel, Thomas M. The OCRopus Open Source OCR System. Tech.
DFKI and U. Kaiserslautern, Oct. 2007. Web. 5 Apr. 2012.

[5] Handel, Paul W. Statistical Machine. General Electric Company,
assignee. Patent 1915993. 27 June 1933. Print.

[6] Smith, Ray. "Tesseract OCR Engine." Lecture. Google Code. Google Inc,
2007. Web. Mar.-Apr. 2012.
<http://tesseract-ocr.googlecode.com/files/TesseractOSCON.pdf>.

[7] Teh, Yee Whye, Simon Osindero, and Geoffrey E. Hinton. "Energy-
Based Models for Sparse Overcomplete Representations.” Journal of
Machine Learning Research 4, 03 Dec. 2003. Web.

[8] Mohri, Mehryar, Fernando Pereira, and Michael Riley. "Weighted Finite-
State Transducers in Speech Recognition.” Publications of Mehryar
Mohri. 2000. Web. 10 Apr. 2012.
<http://www.cs.nyu.edu/~mohri/pub/asr2000.ps>.

[9]1 "Finite State Automata." Strona Gtéwna. Web. 10 Apr. 2012.
<http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/
thesis/node12.html>. 51

[10] Greenfield, Kara and Sarah Judd. “Open Source Natural Language
Processing.” Worcester Polytechnic Institute. Web. 28 Apr. 2010.
<http://www.wpi.edu/Pubs/E-project/Available/E-project-042810-
055257/>.

