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Abstract—Aim to understand, utilize and improve the open 

source Optical Character Recognizer (OCR) software, OCR opus, 

to better handle some of the more complex recognition issues such 

as unique language alphabets and special characters such as 

mathematical symbols. We extended the functionality of OCR 

opus to work with any language by creating support for UTF-8 

character encoding. We also created a character and language 

model for the Hungarian language. This will allow other users of 

the software to perform character recognition on Hungarian input 

without having to train a completely new character model 

 
Index Terms—data mining, neural networks, natural language 

programming, deep learning 

I. INTRODUCTION 

We are moving forward to a more digitized world. Computer 

and PDA screens are replacing the traditional books and 

newspapers. Also the large amount of paper archives which 

requires maintenance as paper decays over time lead to the idea 

of digitizing them instead of simply scanning them. This 

requires recognition software that is capable in an ideal version 

of reading as well as humans. Such OCR software is also 

needed for reading bank checks and postal addresses. 

Automating these two tasks can save many hours of human 

work. OCRopus was created by Professor Tom Breuel from the 

DFKI (German Research Center for Artificial Intelligence at 

Kaiserslautern, Germany). Google sponsored the project on 

April 09, 2007 with the goal of providing an open source OCR 

system capable of performing multiple digitization functions. 

The application of this software ranged from general desktop 

use and simple document conversion to historical document 

analysis and reading aids for visually impaired users 

II. HISTORY OF OCR 

The idea of OCR technology has been around for a long time 

and even predates electronic computers. 

 

 
Fig. 1.  Statistical machine design by Paul W. Handel 

 

This is an image of the original OCR design proposed by Paul 

W. Handel in 1931. He applied for a patent for a device “in 

which successive comparisons are made between a character 

and a character image.”  A photo-electric apparatus would be 

used to respond to a coincidence of a character and an image. 

This means you would shine a light through a filter and, if the 

light matches up with the correct character of the filter, enough 

light will come back through the filter and trigger some 

acceptance mechanism for the corresponding character. This 

was the first documented vision of this type of technology. The 

world has come a long way since this prototype. 

III. TECHNIQUES 

A. Template Matching Method 

In 1956, Kelner and Glauberman used magnetic shift 

registers to project two-dimensional information. The reason 

for this is to reduce the complexity and make it easier to 

interpret the information. A printed input character on paper is 

scanned by a photo detector through a slit. The reflected light 

on the input paper allows the photo detector to segment the 

character by calculating the proportion of the black portion 

within the slit. This proportion value is sent to a register which 

converts the analog values to digital values. These samples 

would then be matched to a template by taking the total sum of 

the differences between each sampled value and the 

corresponding template value. While this machine was not 

commercialized, it gives us important insight into the 

dimensionality of characters. In essence, characters are two-

dimensional, and if we want to reduce the dimension to one, we 

must change the shape of the character for the machine to 

recognize it. 

 

 
Fig.  2.Illustration of 2-D reduction to 1-D by a slit. (a) An input numeral 

“4” and a slit scanned from left to right. (b) Black area projected onto x axis, 

the scanning direction of the slit 
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B. Peephole Method 

This is the simplest logical template matching method.  

Pixels from different zones of the binary character are matched 

to template characters. An example would be in the letter A, 

where a pixel would be selected from the white hole in the 

center, the black section of the stem, and then some others 

outside of the letter.  

 

 
Fig. 3. Illustration of the peephole method 

 

Each template character would have its own mapping of 

these zones that could be matched with the character that needs 

to be recognized. The peephole method was first executed with 

a program called Electronic Reading Automation in 1957. 

 

 
Fig. 4.  The Solartron electronic reading automaton 

 

This was produced by Solartron Electronics Groups Ltd. and 

was used on numbers printed from a cash register. It could read 

120 characters per second, which was quite fast for its time, and 

used 100 peepholes to distinguish characters.  

C. Structured Analysis Method  

It is very difficult to create a template for handwritten 

characters. The variations would be too large to have an 

accurate or functional template. This is where the structure 

analysis method came into play. This method analyzes the 

character as a structure that can be broken down into parts. The 

features of these parts and the relationship between them are 

then observed to determine the correct character. The issue with 

this method is how to choose these features and relationships to 

properly identify all of the different possible characters. 

Peepholes can be viewed on a larger scale. Instead of single 

pixels, we can now look at a slit or ‘stroke’ of pixels and 

determine their relationship with other slits. This technique was 

first proposed in 1954 with William S. Rohland’s “Character 

Sensing System” patent using a single vertical scan. The 

features of the slits are the number of black regions present in 

each slit. This is called the cross counting technique. 

 
Fig. 5.  Extension of the peephole method to structure analysis 

IV. OCROPUS 

The project was initially expected to run for three years as a 

support for three Ph.D. students but was later released as 

software under the Apache license. This means that the project 

is now open source and free to use with the preservation of the 

copyright notice and disclaimer. The major advance in the 

program’s development was the incorporation of the Tesseract 

character recognizer along with growing language modeling 

tools. The last operational version is OCRopus 0.4.4 (alpha). 

A. Language Modeling 

In natural language processing, language models are 

probabilistic models whose main goal is to assign a probability 

to a word or a sentence. In speech recognition for example, they 

are used to predict the next word given the previous ones or 

revise an entire sentence and compare its likelihood against 

another similar sounding sentence. For OCR systems, language 

models are used in a similar fashion to determine the probability 

of a generated word to occur in a sentence. This can be done in 

different ways.  

One way is the grammar approach, which defines the 

possible links and relations between words depending on their 

position in a sentence. This can help determine whether we are 

expecting the next word to be a verb, adjective, noun, 

conjunction, etc. and proceed to reject a word that cannot fit. 

One obstacle facing this approach is long term dependencies in 

languages such as English. For example, we can have sentences 

like “The building that I painted collapsed” and “The building 

that I painted yesterday”. In the first sentence we have two verbs 

in a row. In the second we have “I painted yesterday” which is 

a very weak sentence and if we do not consider the entire 

context and the possibility of having long term dependencies, 

this can lead to a lot of complexity. It is almost impossible to 

have an exhaustive model of the entire grammar of a language.  

Another language modeling method is to use the word 

frequencies and this can be done with different levels of 



International Journal of Research in Engineering, Science and Management  

Volume-1, Issue-9, September-2018 

www.ijresm.com | ISSN (Online): 2581-5782     

 

137 

complexity. The simplest one known as a unigram model is to 

use a word corpus which is generated from a set of texts in the 

desired language and then each word is associated its frequency 

in those texts. This information can then be used to rank the 

words by their probability of appearing in that language. The 

size of the word corpus can improve the accuracy but can also 

increase the ambiguity when it includes extremely rare words. 

For this reason there exists custom word corpora depending on 

the size, the topics and the era of the text supports it was 

generated from. N-gram models are an extension of unigram 

models. They simply look at the probability of the occurrence 

of a word following two or more other words. In practice 

unigram models proved to be sufficient and there are some 

trends to combine different language modeling approaches to 

reach better accuracy.  

B. Language Modeling Implementation 

OCR opus opted for the use of weighted final transducers to 

create language models. These FSTs provide a lot of advantages 

such as the possibility of composing language models or 

concatenating them. 

The OCR opus documentation specifies that language 

modeling is done within the ocrofst collection that provides 

different tools and scripts for creating language models in FST 

form. These scripts are written in the python programming 

language that has a dedicated library for FST handling called 

“pyopenfst”. 

 

 
Fig. 6.  Dictionary generation code 

 

We decided to use and modify these scripts to create a 

language model for the Hungarian Language. The ocropus-lm-

dict2linefst.py script is a fst language model generator that 

takes in a dictionary with word entries and their corresponding 

inverted natural logarithm probabilities to produce the 

corresponding FST. The reason for using the ln() operation is 

to avoid underflow since the probabilities are in the 0 to 1 range. 

The first step was to generate such dictionary from a word 

corpus. We chose to use the “Hungarian Webcorpus” that can 

be found at http://mokk.bme.hu/resources/webcorpus/ as it is 

available under a permissive Open Content License. For this we 

wrote a python script that can create the needed dictionary from 

any word corpus from the “Hungarian Webcorpus” 

This script generated the file hungDict.txt that contained the 

Hungarian words along with their negative log probabilities as 

shown in the screen shot below. 

 

 
Fig. 7.  Cost dictionary for the Hungarian language 

 

 
Fig.  8. Sample portion of an English language model FST 

 

The next step was to use the ocropus-lm-dict2linefst script to 

generate the corresponding FST to this Hungarian dictionary. 

When trying to run this script we immediately faced the issue 

of not being able to process all Hungarian characters. The 

reason for this is that the script was initially written to support 
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the Latin-2 encoding that does not have the capability of 

representing letters with accents; a necessary feature in the 

Hungarian Language. 

To solve this problem we had to change the script to read the 

Hungarian dictionary in the UTF-8 encoding and make the 

appropriate changes in the FST creation pipeline. This lead us 

to refine the Add String() method in the pyopen fst library 

which is now able to accept any UF8 encoded character. 

Finally after creating our language model FST, we 

introduced it into the OCR opus pipeline. 

This picked out errors and in coherencies of the raw output 

from the character model recognition step. 

The output of our Hungarian language model shows a 

significant improvement in accuracy. The mistakes that exist 

seemed to be related to segmentation errors rather than 

inconsistencies in our character and language model. 

V. USING OF OCROPUS SOFTWARE 

The code base for OCR opus has gone through many 

revisions in the past few years and lacked sufficient updates to 

their documentation. This particular revision was meant to 

consolidate many of the OCR steps into simpler, concise 

functions. In the process, some less useful functions remained 

in the code base and the useful ones were not marked as so. This 

made our initial use of this software challenging. To alleviate 

some of the challenges with this revision, we created a step-by-

step guide starting from the installation of OCR opus and 

ending with text files, character models, and language models. 

This also includes some first-hand experience with errors and 

elapsed time for some of the more CPU intensive commands. 

Note: Anything bolded in the following sections is a 

command that can be run in a Linux terminal. 

VI. RESULT 

After successfully creating our Hungarian character and 

language models, we assessed the accuracy of the OCR opus 

software. We compared the results of our models versus the 

default English models on a Hungarian algebra textbook written 

in 1977 by László Fuchs. We were able to successfully 

recognize Hungarian accented characters and increase the 

overall accuracy. We used a character based approach to assess 

the accuracy and increase the rate of correct recognition by 8%. 

The original accuracy with the English character model was 

86% on a sample of 1700 characters and we increased this to 

93.5% with our Hungarian character model. We manually 

calculated the accuracy because the ground truth data for this 

text did not exist in digital form. From our tests, we have 

concluded that our character and language model yield 

significantly better results than the default English models. 

VII. CONCLUSION 

The goal of OCR opus is to provide an accessible, flexible, and 

simple tool to preform optical character recognition. In its 

current state, it is not the most user friendly utility and still has 

many kinks to work out. This is all understandable because it is 

in an alpha stage of development, and will require some more 

attention before an official release. OCR opus does an amazing 

job pre-processing and segmenting images and allows for many 

fine adjustments to fulfill a variety of user needs. It is now just 

a matter of reorganizing and optimizing the code to create a user 

friendly experience. With time, we believe OCR opus will be 

one of leading names in optical character recognition software. 

REFERENCES 

[1] Hyvärinen, Aapo, and Erkki Oja. "Algorithms and Applications." 

Independent Component Analysis (2000): 1-31. Web. Jan.-Apr. 2012.  

[2] Mori, Shunji, Ching Y. Suen, and Kazuhiko Yamamoto. Historical 

Review of OCR Research and Development. Tech. no. 0018-9219. Vol. 

80. IEEE, 1992. Print. Proceedings of the IEEE.  

[3] Holley, Rose. "How Good Can It Get? Analysing and Improving OCR 

Accuracy in Large Scale Historic Newspaper Digitisation Programs." D-

Lib Magazine. Web. 28 Mar. 2012.  

<http://www.dlib.org/dlib/march09/holley/03holley.html>.  

[4] Breuel, Thomas M. The OCRopus Open Source OCR System. Tech. 

DFKI and U. Kaiserslautern, Oct. 2007. Web. 5 Apr. 2012.  

[5] Handel, Paul W. Statistical Machine. General Electric Company, 

assignee. Patent 1915993. 27 June 1933. Print.  

[6] Smith, Ray. "Tesseract OCR Engine." Lecture. Google Code. Google Inc, 

2007. Web. Mar.-Apr. 2012.  

<http://tesseract-ocr.googlecode.com/files/TesseractOSCON.pdf>.  

[7] Teh, Yee Whye, Simon Osindero, and Geoffrey E. Hinton. "Energy-

Based Models for Sparse Overcomplete Representations." Journal of 

Machine Learning Research 4, 03 Dec. 2003. Web. 

[8] Mohri, Mehryar, Fernando Pereira, and Michael Riley. "Weighted Finite-

State Transducers in Speech Recognition." Publications of Mehryar 

Mohri. 2000. Web. 10 Apr. 2012.  

<http://www.cs.nyu.edu/~mohri/pub/asr2000.ps>.  

[9] "Finite State Automata." Strona Główna. Web. 10 Apr. 2012. 

<http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/

thesis/node12.html>. 51  

[10] Greenfield, Kara and Sarah Judd. “Open Source Natural Language 

Processing.” Worcester Polytechnic Institute. Web. 28 Apr. 2010. 

<http://www.wpi.edu/Pubs/E-project/Available/E-project-042810-

055257/>.

 

 

 


