
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

135

Abstract—Aim to understand, utilize and improve the open

source Optical Character Recognizer (OCR) software, OCR opus,

to better handle some of the more complex recognition issues such

as unique language alphabets and special characters such as

mathematical symbols. We extended the functionality of OCR

opus to work with any language by creating support for UTF-8

character encoding. We also created a character and language

model for the Hungarian language. This will allow other users of

the software to perform character recognition on Hungarian input

without having to train a completely new character model

Index Terms—data mining, neural networks, natural language

programming, deep learning

I. INTRODUCTION

We are moving forward to a more digitized world. Computer

and PDA screens are replacing the traditional books and

newspapers. Also the large amount of paper archives which

requires maintenance as paper decays over time lead to the idea

of digitizing them instead of simply scanning them. This

requires recognition software that is capable in an ideal version

of reading as well as humans. Such OCR software is also

needed for reading bank checks and postal addresses.

Automating these two tasks can save many hours of human

work. OCRopus was created by Professor Tom Breuel from the

DFKI (German Research Center for Artificial Intelligence at

Kaiserslautern, Germany). Google sponsored the project on

April 09, 2007 with the goal of providing an open source OCR

system capable of performing multiple digitization functions.

The application of this software ranged from general desktop

use and simple document conversion to historical document

analysis and reading aids for visually impaired users

II. HISTORY OF OCR

The idea of OCR technology has been around for a long time

and even predates electronic computers.

Fig. 1. Statistical machine design by Paul W. Handel

This is an image of the original OCR design proposed by Paul

W. Handel in 1931. He applied for a patent for a device “in

which successive comparisons are made between a character

and a character image.” A photo-electric apparatus would be

used to respond to a coincidence of a character and an image.

This means you would shine a light through a filter and, if the

light matches up with the correct character of the filter, enough

light will come back through the filter and trigger some

acceptance mechanism for the corresponding character. This

was the first documented vision of this type of technology. The

world has come a long way since this prototype.

III. TECHNIQUES

A. Template Matching Method

In 1956, Kelner and Glauberman used magnetic shift

registers to project two-dimensional information. The reason

for this is to reduce the complexity and make it easier to

interpret the information. A printed input character on paper is

scanned by a photo detector through a slit. The reflected light

on the input paper allows the photo detector to segment the

character by calculating the proportion of the black portion

within the slit. This proportion value is sent to a register which

converts the analog values to digital values. These samples

would then be matched to a template by taking the total sum of

the differences between each sampled value and the

corresponding template value. While this machine was not

commercialized, it gives us important insight into the

dimensionality of characters. In essence, characters are two-

dimensional, and if we want to reduce the dimension to one, we

must change the shape of the character for the machine to

recognize it.

Fig. 2.Illustration of 2-D reduction to 1-D by a slit. (a) An input numeral

“4” and a slit scanned from left to right. (b) Black area projected onto x axis,

the scanning direction of the slit

Optical Character Recognition (OCR)

Cheripelli Vijay1, Attarde Gokarna2, Badade Sagar3

1,2,3Student, Department of Computer Engineering, MGMCET, Navi Mumbai, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

136

B. Peephole Method

This is the simplest logical template matching method.

Pixels from different zones of the binary character are matched

to template characters. An example would be in the letter A,

where a pixel would be selected from the white hole in the

center, the black section of the stem, and then some others

outside of the letter.

Fig. 3. Illustration of the peephole method

Each template character would have its own mapping of

these zones that could be matched with the character that needs

to be recognized. The peephole method was first executed with

a program called Electronic Reading Automation in 1957.

Fig. 4. The Solartron electronic reading automaton

This was produced by Solartron Electronics Groups Ltd. and

was used on numbers printed from a cash register. It could read

120 characters per second, which was quite fast for its time, and

used 100 peepholes to distinguish characters.

C. Structured Analysis Method

It is very difficult to create a template for handwritten

characters. The variations would be too large to have an

accurate or functional template. This is where the structure

analysis method came into play. This method analyzes the

character as a structure that can be broken down into parts. The

features of these parts and the relationship between them are

then observed to determine the correct character. The issue with

this method is how to choose these features and relationships to

properly identify all of the different possible characters.

Peepholes can be viewed on a larger scale. Instead of single

pixels, we can now look at a slit or ‘stroke’ of pixels and

determine their relationship with other slits. This technique was

first proposed in 1954 with William S. Rohland’s “Character

Sensing System” patent using a single vertical scan. The

features of the slits are the number of black regions present in

each slit. This is called the cross counting technique.

Fig. 5. Extension of the peephole method to structure analysis

IV. OCROPUS

The project was initially expected to run for three years as a

support for three Ph.D. students but was later released as

software under the Apache license. This means that the project

is now open source and free to use with the preservation of the

copyright notice and disclaimer. The major advance in the

program’s development was the incorporation of the Tesseract

character recognizer along with growing language modeling

tools. The last operational version is OCRopus 0.4.4 (alpha).

A. Language Modeling

In natural language processing, language models are

probabilistic models whose main goal is to assign a probability

to a word or a sentence. In speech recognition for example, they

are used to predict the next word given the previous ones or

revise an entire sentence and compare its likelihood against

another similar sounding sentence. For OCR systems, language

models are used in a similar fashion to determine the probability

of a generated word to occur in a sentence. This can be done in

different ways.

One way is the grammar approach, which defines the

possible links and relations between words depending on their

position in a sentence. This can help determine whether we are

expecting the next word to be a verb, adjective, noun,

conjunction, etc. and proceed to reject a word that cannot fit.

One obstacle facing this approach is long term dependencies in

languages such as English. For example, we can have sentences

like “The building that I painted collapsed” and “The building

that I painted yesterday”. In the first sentence we have two verbs

in a row. In the second we have “I painted yesterday” which is

a very weak sentence and if we do not consider the entire

context and the possibility of having long term dependencies,

this can lead to a lot of complexity. It is almost impossible to

have an exhaustive model of the entire grammar of a language.

Another language modeling method is to use the word

frequencies and this can be done with different levels of

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

137

complexity. The simplest one known as a unigram model is to

use a word corpus which is generated from a set of texts in the

desired language and then each word is associated its frequency

in those texts. This information can then be used to rank the

words by their probability of appearing in that language. The

size of the word corpus can improve the accuracy but can also

increase the ambiguity when it includes extremely rare words.

For this reason there exists custom word corpora depending on

the size, the topics and the era of the text supports it was

generated from. N-gram models are an extension of unigram

models. They simply look at the probability of the occurrence

of a word following two or more other words. In practice

unigram models proved to be sufficient and there are some

trends to combine different language modeling approaches to

reach better accuracy.

B. Language Modeling Implementation

OCR opus opted for the use of weighted final transducers to

create language models. These FSTs provide a lot of advantages

such as the possibility of composing language models or

concatenating them.

The OCR opus documentation specifies that language

modeling is done within the ocrofst collection that provides

different tools and scripts for creating language models in FST

form. These scripts are written in the python programming

language that has a dedicated library for FST handling called

“pyopenfst”.

Fig. 6. Dictionary generation code

We decided to use and modify these scripts to create a

language model for the Hungarian Language. The ocropus-lm-

dict2linefst.py script is a fst language model generator that

takes in a dictionary with word entries and their corresponding

inverted natural logarithm probabilities to produce the

corresponding FST. The reason for using the ln() operation is

to avoid underflow since the probabilities are in the 0 to 1 range.

The first step was to generate such dictionary from a word

corpus. We chose to use the “Hungarian Webcorpus” that can

be found at http://mokk.bme.hu/resources/webcorpus/ as it is

available under a permissive Open Content License. For this we

wrote a python script that can create the needed dictionary from

any word corpus from the “Hungarian Webcorpus”

This script generated the file hungDict.txt that contained the

Hungarian words along with their negative log probabilities as

shown in the screen shot below.

Fig. 7. Cost dictionary for the Hungarian language

Fig. 8. Sample portion of an English language model FST

The next step was to use the ocropus-lm-dict2linefst script to

generate the corresponding FST to this Hungarian dictionary.

When trying to run this script we immediately faced the issue

of not being able to process all Hungarian characters. The

reason for this is that the script was initially written to support

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

138

the Latin-2 encoding that does not have the capability of

representing letters with accents; a necessary feature in the

Hungarian Language.

To solve this problem we had to change the script to read the

Hungarian dictionary in the UTF-8 encoding and make the

appropriate changes in the FST creation pipeline. This lead us

to refine the Add String() method in the pyopen fst library

which is now able to accept any UF8 encoded character.

Finally after creating our language model FST, we

introduced it into the OCR opus pipeline.

This picked out errors and in coherencies of the raw output

from the character model recognition step.

The output of our Hungarian language model shows a

significant improvement in accuracy. The mistakes that exist

seemed to be related to segmentation errors rather than

inconsistencies in our character and language model.

V. USING OF OCROPUS SOFTWARE

The code base for OCR opus has gone through many

revisions in the past few years and lacked sufficient updates to

their documentation. This particular revision was meant to

consolidate many of the OCR steps into simpler, concise

functions. In the process, some less useful functions remained

in the code base and the useful ones were not marked as so. This

made our initial use of this software challenging. To alleviate

some of the challenges with this revision, we created a step-by-

step guide starting from the installation of OCR opus and

ending with text files, character models, and language models.

This also includes some first-hand experience with errors and

elapsed time for some of the more CPU intensive commands.

Note: Anything bolded in the following sections is a

command that can be run in a Linux terminal.

VI. RESULT

After successfully creating our Hungarian character and

language models, we assessed the accuracy of the OCR opus

software. We compared the results of our models versus the

default English models on a Hungarian algebra textbook written

in 1977 by László Fuchs. We were able to successfully

recognize Hungarian accented characters and increase the

overall accuracy. We used a character based approach to assess

the accuracy and increase the rate of correct recognition by 8%.

The original accuracy with the English character model was

86% on a sample of 1700 characters and we increased this to

93.5% with our Hungarian character model. We manually

calculated the accuracy because the ground truth data for this

text did not exist in digital form. From our tests, we have

concluded that our character and language model yield

significantly better results than the default English models.

VII. CONCLUSION

The goal of OCR opus is to provide an accessible, flexible, and

simple tool to preform optical character recognition. In its

current state, it is not the most user friendly utility and still has

many kinks to work out. This is all understandable because it is

in an alpha stage of development, and will require some more

attention before an official release. OCR opus does an amazing

job pre-processing and segmenting images and allows for many

fine adjustments to fulfill a variety of user needs. It is now just

a matter of reorganizing and optimizing the code to create a user

friendly experience. With time, we believe OCR opus will be

one of leading names in optical character recognition software.

REFERENCES

[1] Hyvärinen, Aapo, and Erkki Oja. "Algorithms and Applications."

Independent Component Analysis (2000): 1-31. Web. Jan.-Apr. 2012.

[2] Mori, Shunji, Ching Y. Suen, and Kazuhiko Yamamoto. Historical

Review of OCR Research and Development. Tech. no. 0018-9219. Vol.

80. IEEE, 1992. Print. Proceedings of the IEEE.

[3] Holley, Rose. "How Good Can It Get? Analysing and Improving OCR

Accuracy in Large Scale Historic Newspaper Digitisation Programs." D-

Lib Magazine. Web. 28 Mar. 2012.

<http://www.dlib.org/dlib/march09/holley/03holley.html>.

[4] Breuel, Thomas M. The OCRopus Open Source OCR System. Tech.

DFKI and U. Kaiserslautern, Oct. 2007. Web. 5 Apr. 2012.

[5] Handel, Paul W. Statistical Machine. General Electric Company,

assignee. Patent 1915993. 27 June 1933. Print.

[6] Smith, Ray. "Tesseract OCR Engine." Lecture. Google Code. Google Inc,

2007. Web. Mar.-Apr. 2012.

<http://tesseract-ocr.googlecode.com/files/TesseractOSCON.pdf>.

[7] Teh, Yee Whye, Simon Osindero, and Geoffrey E. Hinton. "Energy-

Based Models for Sparse Overcomplete Representations." Journal of

Machine Learning Research 4, 03 Dec. 2003. Web.

[8] Mohri, Mehryar, Fernando Pereira, and Michael Riley. "Weighted Finite-

State Transducers in Speech Recognition." Publications of Mehryar

Mohri. 2000. Web. 10 Apr. 2012.

<http://www.cs.nyu.edu/~mohri/pub/asr2000.ps>.

[9] "Finite State Automata." Strona Główna. Web. 10 Apr. 2012.

<http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/

thesis/node12.html>. 51

[10] Greenfield, Kara and Sarah Judd. “Open Source Natural Language

Processing.” Worcester Polytechnic Institute. Web. 28 Apr. 2010.

<http://www.wpi.edu/Pubs/E-project/Available/E-project-042810-

055257/>.

