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Abstract— As wireless networks evolve towards high mobility 

and providing better support for connected vehicles, a number of 

new challenges arise due to the resulting high dynamics in 

vehicular environments and thus motive rethinking of traditional 

wireless design methodologies. Future intelligent vehicles, which 

are at the heart of high mobility networks, are increasingly 

equipped with multiple advanced onboard sensors and keep gen-

erating large volumes of data. Machine learning, as an effective 

approach to artificial intelligence, can provide a rich set of tools to 

exploit such data for the benefit of the networks. In this article, we 

first identify the distinctive characteristics of high mobility 

vehicular networks and motivate the use of machine learning to 

address the resulting challenges. After a brief introduction of the 

major concepts of machine learning, we discuss its applications to 

learn the dynamics of vehicular networks and make informed 

decisions to optimize network performance. In particular, we 

discuss in greater detail the application of reinforcement learning 

in managing network resources as an alternative to the prevalent 

optimization approach. Finally, some open issues worth further 

investigation are highlighted.  

 
Index Terms—Machine learning, vehicular networks, high 

mobility, Internet of intelligent vehicles. 

 

I. INTRODUCTION 

Wireless networks that can support high mobility broadband 

access have received more and more attention from both 

industry and academia in recent years [1]–[3]. In particular, the 

concept of connected vehicles or vehicular networks, as shown 

in Fig. 1, has gained substantial momentum to bring a new level 

of connectivity to vehicles and, along with novel onboard 

computing and sensing technologies, serve as a key enabler of 

intelligent transportation systems (ITS) and smart cities [4]. 

This new generation of networks will ultimately have a 

profound impact on the society, making every day traveling 

safer, greener, and more efficient and comfortable. Along with 

recent advances in a wide range of artificial intelligence (AI) 

technologies, it is helping pave the road to autonomous driving 

in the advent of the fifth generation cellular systems (5G). 

Over the years, several communication standards for 

vehicular ad hoc networks (VANETs) have been developed 

across the globe, including dedicated short range 

communications (DSRC) in the United States [5] and the ITS-

G5 in Europe [6], both based on the IEEE 802.11p technology  

 

[7]. However, these technologies have been shown in recent 

studies [3], [8] to suffer from several issues, such as unbounded 

channel access delay, lack of quality of service (QoS) 

guarantees, and short-lived vehicle-to-infrastructure (V2I) 

connection. To address the limitations of IEEE 802.11p based 

technologies and leverage the high penetration rate of cellular 

networks, the 3rd Generation Partnership Project (3GPP) has 

started to investigate supporting vehicle-to-everything (V2X) 

services in the long term evolution (LTE) networks and the 

future 5G cellular system [9], [10]. Some recent works along 

this line of effort can be found in [4], [11]–[16], which study 

efficient radio resource allocation for vehicular networks that 

em-ploy the device-to-device (D2D) communications 

technology to support vehicle-to-vehicle (V2V) transmission in 

cellular systems. Major challenges in designing wireless 

networks to provide reliable and efficient support for high 

mobility environments result from the stringent and 

heterogeneous QoS requirements of vehicular applications as 

well as the strong dynamics that are inherent of the vehicular 

environment. 

 

 
Fig. 1.  An illustrative structure of vehicular networks 

 

In the meantime, future intelligent vehicles are increasingly 

equipped with a wide variety of sensors, such as engine control 

units, radar, light detection and ranging (LIDAR), and cameras, 

to help the vehicle perceive the surrounding environment as 

well as monitoring its own operation status in real time. 
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Together with high performance computing and storage devices 

onboard, these sensing technologies are transforming vehicles 

from a simple transportation facility to a powerful computing 

and networking hub with intelligent processing capabilities. 

They keep collecting, generating, storing, and communicating 

large volumes of data, subject to further processing and 

commonly referred to as mobile big data [17]–[19]. Such data 

provide rich context information regarding the vehicle kinetics 

(such as speed, acceleration, and direction), road conditions, 

traffic flow, wireless environments, etc., that can be exploited 

to improve network performance through adaptive data-driven 

decision making. However, traditional communications 

strategies are not designed to handle and exploit such 

information. 

As a prevailing approach to AI, machine learning, in 

particular deep learning, has drawn considerable attention in 

recent years due to its astonishing progress in such areas as 

image classification [20], video game playing [21], and Go 

[22]. It helps build intelligent systems to operate in complicated 

environments and has found many successful applications in 

computer vision, natural language processing, and robotics 

[23], [24]. Machine learning develops efficient methods to 

model and analyze large volumes of data by finding patterns 

and underlying structures and represents an effective data-

driven approach to problems encountered in various scientific 

fields where heterogeneous types of data are available for 

exploitation. As a result, machine learning provides a rich set 

of tools that can be leveraged to exploit the data generated and 

stored in vehicular networks [25], [26] and help the network 

make more informed and data-driven decisions. However, how 

to adapt and exploit such tools to account for the distinctive 

characteristics of high mobility vehicular networks and serve 

the purpose of reliable vehicular communications remains 

challenging and represents a promising research direction. In 

this paper, we discuss recent advances in applying machine 

learning in high mobility vehicular networks and aim to bring 

more attention to this emerging field. 

The rest of this paper is organized as follows. In Section II, 

we introduce the unique characteristics and challenges of high 

mobility vehicular networks and motivate the use of machine 

learning to address the challenges. In Section III, we discuss the 

basic concepts and major categories of machine learning, and 

then investigate how to apply machine learning to learn the 

dynamics of high mobility networks in Section IV. In Section 

V, we present some preliminary examples of applying machine 

learning for data-driven decision making and wireless resource 

management problems in vehicular networks. In Section VI, we 

recognize and highlight several open issues that warrant further 

research and concluding remarks are finally made in Section 

VII. 

II. CHALLENGES OF HIGH MOBILITY VEHICULAR NETWORKS 

High mobility vehicular networks exhibit distinctive 

characteristics and pose significant challenges to wireless 

network design. In this section, we identify such challenges and 

then discuss the potential of leveraging machine learning to 

address them. 

A. Strong Dynamics 

High mobility leads to high dynamics and affects system 

design in multiple aspects of the communications network. 

Special channel propagation characteristics are among the most 

fundamental differentiating factors of high mobility net-works 

compared with low mobility counterparts. For example, 

vehicular channels exhibit rapid temporal variation and also 

suffer from inherent non-stationarity of channel statistics due to 

their unique physical environment dynamics [27], [28]. Such 

rapid variations induce short channel coherence time and bring 

significant challenges in acquiring accurate channel estimates 

at the receiver in real time. This is further hindered by the non-

stationarity of channel statistics, which are usually leveraged to 

improve estimation accuracy [29]–[31]. Meanwhile, due to the 

high Doppler spread caused by vehicle mobility, the 

multicarrier modulation scheme is more susceptible to inter-

carrier interference (ICI) in vehicular networks [32], [33] and 

hence brings difficulty to signal detection. Constant mobility of 

vehicles also causes frequent changes of the communications 

network topology, affecting channel allocation and routing 

protocol designs. For example, in cluster-based vehicular net-

works [34], moving vehicles may join and leave the cluster 

frequently, making it hard to maintain long-lasting connections 

within the formed cluster and thus warranting further analysis 

on cluster stability. Another source of dynamics in high 

mobility networks comes from the changing vehicle density, 

which varies dramatically depending on the locations (remote 

suburban or dense urban areas) and time (peak or off hours of 

the day). Flexible and robust resource management schemes 

that make efficient use of available resources while adapting to 

the vehicle density variation are thus needed. 

Traditionally developed rigorous mathematical theories and 

methods for wireless networks are mostly based on static or 

low-mobility environment assumptions and usually not 

designed to treat the varying environment conditions in an 

effective way. Therefore, it is important to explore new 

methodologies that can interact with fast changing 

environments and obtain optimal policies for high mobility 

vehicular networks in terms of both physical layer problems, 

such as channel estimation and signal detection and decoding, 

and upper layer designs, such as resource allocation, link 

scheduling and routing.  

B. Heterogeneous and Stringent QoS Requirements 

In high mobility vehicular networks, there exist different 

types of connections, which we broadly categorize into V2I and 

V2V links. The V2I links enable vehicles to communicate with 

the base station to support various traffic efficiency and 

information and entertainment (infotainment) services. They 

generally require frequent access to the Internet or remote 

servers for media streaming, HD map downloading, and social 
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networking, which involve considerable amount of data transfer 

and thus are more bandwidth intensive [3]. On the other hand, 

the V2V links are mainly considered for sharing safety-critical 

information, such as basic safety messages (BSM) in DSRC [5], 

among vehicles in close proximity in either a periodic or event 

triggered manner. Such safety related messages are strictly 

delay sensitive and require very high reliability. For example, 

the European METIS project requires the end-to-end latency to 

be less than 5 milliseconds and the transmission reliability to be 

higher than 99.999% for a safety packet of 1600 bytes [35]. 

Moreover, high bandwidth sensor data sharing among vehicles 

is currently being considered in 3GPP for V2X enhancement in 

future 5G cellular networks for advanced safety applications 

[10], whose quality degrades gracefully with increase in packet 

delay and loss. As a result, stringent QoS requirements of low 

latency and high reliability are in turn imposed on the V2V 

links. Traditional wireless design approaches are hard to 

simultaneously meet such diverse and stringent QoS 

requirements of vehicular applications, which is further 

challenged by the strong dynamics in high mobility vehicular 

networks as discussed in Section II-A. 

C. The Potential of Machine Learning 

Machine learning emphasizes the ability to learn and adapt 

to the environment with changes and uncertainties. Different 

from the traditional schemes that rely on explicit system 

parameters, such as the received signal power or signal-to-

interference-plus-noise ratio (SINR), for decision making in 

vehicular networks, machine learning can exploit multiple 

sources of data generated and stored in the network (e.g., power 

profiles, network topologies, vehicle behavior patterns, the 

vehicle locations/kinetics, etc.) to learn the dynamics in the 

environment and then extract appropriate features to use for the 

benefit of many tasks for communications purposes, such as 

signal detection, resource management, and routing. However, 

it is a non-trivial task to extract context or semantic information 

from a huge amount of accessible data, which might have been 

contaminated by noise, multi-modality, or redundancy, and thus 

information extraction and distillation need to be performed. 

In particular, reinforcement learning [36], one of the ma-

chine learning tools, can interact with the dynamic environment 

and develop satisfactory policies to meet diverse QoS 

requirements of vehicular networks while adapting to the 

varying wireless environment. For example, in resource 

allocation problems, the optimal policies are first learned and 

then the vehicle agents accordingly take actions to ad-just 

powers and allocate channels adaptive to the changing 

environments characterized by, e.g, link conditions, locally 

perceived interference, and vehicle kinetics while traditional 

static mathematical models are not good at capturing such 

dynamic changes. 

III. MACHINE LEARNING 

Machine learning allows computers to find hidden insights 

through iteratively learning from data, without being explicitly 

programmed. It has revolutionized the world of computer 

science by allowing learning with large datasets, which enables 

machines to change, re-structure and optimize algorithms by 

themselves. Existing machine learning methods can be divided 

into three categories, namely, supervised learning, 

unsupervised learning, and reinforcement learning. Other 

learning schemes, such as semi-supervised learning, online 

learning, and transfer learning, can be viewed as variants of 

these three basic types. In general, machine learning involves 

two stages, i.e., training and testing. In the training stage, a 

model is learned based on the training data while in the testing 

stage, the trained model is applied to produce the prediction. In 

this section, we briefly introduce the basics of machine learning 

in the hope that the readers can appreciate their potential in 

solving traditionally challenging problems. 

A. Supervised Learning 

The majority of practical machine learning algorithms use 

supervised learning with a labeled dataset, where each training 

sample comes with a label. The ultimate goal of supervised 

learning is to find the mapping from the input feature space to 

the label so that reliable prediction can be made when new input 

data is given. Supervised learning problems can be further 

categorized into classification and regression, where the 

difference between the two tasks is that the labels are 

categorical for classification and numerical for regression. 

Classification algorithms learn to predict a category output 

for each incoming sample based on the training data. Some 

classic algorithms in this category include Bayesian classifiers 

[37], k-nearest neighbors (KNN) [38], decision trees [39], 

support vector machine (SVM) [40], and neural networks [41].

 Instead of discrete outputs, regression algorithms predict a 

continuous value corresponding to each sample, such as 

estimating the house price given its associated feature inputs. 

Classic regression algorithms include logistic regression [42], 

support vector regression (SVR) [43], and Gaussian process for 

regression [37]. 

B. Unsupervised Learning 

The label data serves as the teacher in supervised learning so 

that there is a clear measure of success that can be used to judge 

the goodness of the learned model in various situations. 

Nevertheless, a large amount of labeled data is often hard to 

obtain in practice. As a consequence, learning with unlabeled 

data, known as unsupervised learning, has been developed to 

find an efficient representation of the data samples without any 

labeling information. For instance, samples might be explained 

by hidden structures or hidden variables, which can be 

represented and learned by Bayesian learning methods. 

A representative case of unsupervised learning is clustering, 

namely, to group samples in a way that samples in the same 

cluster have more similarities than the samples in different 

clusters. The features used for clustering could be either the 

absolute description of each sample or the relative similarities 
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between samples. Classic clustering algorithms include k-

means [44], hierarchical clustering [45], spectrum clustering 

[46], and Dirichlet process [47].  

Besides clustering, dimension reduction is another important 

case of unsupervised learning, where samples from a high 

dimensional space are projected into a lower one without losing 

too much information. In many scenarios, the raw data come 

with high dimension, which is not desirable because of several 

reasons. One reason is the so-called curse of dimensionality 

[48], which describes the problematic phenomenon 

encountered when the dimension becomes huge. For instance, 

in optimization, clustering, and classification, the model 

complexity and the number of required training samples grow 

dramatically with the feature dimension. Another reason is that 

the inputs of each dimension are usually correlated and some 

dimensions may be corrupted with noise and interference, 

which would degrade the learning performance if not handled 

properly. Some classic dimension reduction algorithms include 

linear projection methods, such as principal component analysis 

(PCA) [49], and nonlinear projection methods, such as 

manifold learning, local linear embedding (LLE) [50], and 

isometric feature mapping (ISOMAP) [51]. 

C. Reinforcement Learning 

In reinforcement learning problems, an agent learns the 

optimal behaviors through interacting with the environment in 

a trial-and-error manner aiming to maximize rewards from the 

environment. The environment is modeled as a Markov 

decision process (MDP), which introduces actions and rewards 

to a Markov process. Both the state transition probability, 

(s', r | s,a)P  and the reward, r, are determined only by the 

current state, s, and the selected action, a. The goal of 

reinforcement learning is to find a policy that takes the action 

to maximize the future discounted reward, defined as, 

 
2

1 2 3 1 1.....I T T T T TG R R R R G           (1)  

 

Where γ is the discount factor and RT is the reward at each 

time step t [36]. 

Learning the Q function is a classic approach to solve the 

reinforcement learning problem, where the (s, a)Q function 

estimates the expectation of the sum reward when taking an 

action a, in a given state “s”. The optimal Q function is the 

maximum expected sum reward achievable by following any 

policy of choosing actions and constrained by the Bellman 

equation, 

' ,
*(s,a) (s', r | s,a) r *(s',a')
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Where A is the action set. In general, at the fixed point of 

Bellman equation, the optimal Q function can be found by 

performing iterative updates, after which the optimal policy can 

be determined by taking the action that maximizes the Q 

function. Reinforcement learning can be applied in vehicular 

networks to handle the temporal variation of wireless 

environments, which will be discussed in Section V-E in detail. 

D. Deep Learning 

Deep learning aims to learn data representations, which can 

be built in supervised, unsupervised, and reinforcement 

learning and has made significant advances in various machine 

learning tasks. As a deeper version of neural networks, which 

consist multiple layers of neurons, the structure of deep learning 

is shown in Fig. 2. The input layer is at the left, where each node 

in the figure represents a dimension of the input data, while the 

output layer is at the right, corresponding to the outputs. The 

layers in the middle are called hidden layers. Each neuron in the 

network performs a non-linear transform on a weighted sum of 

a subset of neurons in its preceding layer. The nonlinear 

function may be the sigmoid function, or the Relu function 

defined as
1

(a)
1

s a
f

e



 and (a) MAX(0,a)Rf    

respectively. Hence, the output of the network Z is a cascade of 

nonlinear transform of the input data I, mathematically 

expressed as, 
(L 1) 2 (1)(I, ) f (f (...f (I)))LZ f      (3)  

Where L is the layer index and θ denotes the weights of the 

neural network.  

 

 
Fig. 2.  An example of deep neural networks 

 

Typically, the neural network’s representation ability grows 

as the hidden layers become deeper. However, numerous 

barriers occur when training deeper networks, such as much 

more training data is needed and gradients of networks may 

easily explode or vanish [23]. By virtue of development in 

faster computation resources, new training methods (new 

activation functions [52], pre-training [53]), and new structures 

(batch norm [54], residual networks [55]), training a much 

deeper neural network becomes viable. Recently, deep learning 

has been widely used in computer vision [20], speech 

recognition [56], natural language processing [57], etc., and has 

greatly improved state-of-the-art performance in each area. In 

addition, different structures can be added to the deep neural 

networks for different applications. For example, convolutional 
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networks share weights among spatial dimensions while 

recurrent neural networks (RNN) and long short term memory 

(LSTM) share weights among the temporal dimensions [23]. 

IV. LEARNING DYNAMICS 

High mobility networks exhibit strong dynamics in many 

facets, e.g., wireless propagation channels, network topologies, 

traffic dynamics, etc., that heavily influence the network 

performance. In this section, we discuss how to exploit machine 

learning to efficiently learn and robustly predict such dynamics 

based on data from a variety of sources. 

A. Learning-Enabled Channel Estimation 

Accurate and efficient channel estimation is a critical 

component in modern wireless communications systems. It has 

strong impacts on receiver design (e.g., channel equalization, 

demodulation, decoding, etc.) as well as radio resource 

allocation at the transmitter for interference mitigation and 

performance optimization. Channel estimation is more of an 

issue in vehicular networks with high Doppler shifts and short 

channel coherence periods. 

Statistical information of wireless channels, such as time and 

frequency domain correlation, mainly depends on vehicle 

locations/speeds, multipath delay spread, and the surrounding 

wireless environment. In cellular based vehicular networks, the 

base station can easily access accurate location information 

(speed can also be inferred) of all vehicles traveling under its 

coverage from various global navigation satellite systems 

(GNSS) on vehicles. It can maintain a dynamic database to store 

the historical estimates of communications channels for all 

vehicular links along with relevant context information, such as 

locations of the transmitters and/or receivers and traffic 

patterns. Various machine learning tools, such as Bayesian 

learning and deep learning, can then be leveraged to exploit 

such historical data to predict the channel statistics and enhance 

instantaneous channel estimation for current vehicular links. 

For example, a Bayesian learning approach has been adopted 

to estimate the sparse massive multiple-input multiple-output 

(MIMO) channel in [58], where the channel is modeled using 

Gaussian mixture distribution and an efficient estimator has 

been derived based on approximate message passing (AMP) 

and expectation-maximization (EM) algorithms. Deep learning 

has been exploited in [59] to implicitly estimate wireless 

channels in orthogonal frequency division multiplexing 

(OFDM) systems and shown to be robust to nonlinear 

distortions and other impairments, such as training pilot’s 

reduction and cyclic prefix (CP) removal. 

B. Traffic Flow Prediction 

Traffic flow prediction aims to infer traffic information from 

historical and real-time traffic data collected by various 

onboard and roadway sensors. It can be used in a variety of ITS 

applications, such as traffic congestion alleviation, fuel 

efficiency improvement, and carbon emission reduction. Given 

the rich amount of traffic data, machine learning can be lever-

aged to enhance the flow prediction performance and achieve 

unparalleled accuracy. In [60], a deep learning based method 

has been proposed to predict traffic flow, where a stacked auto 

encoder is exploited to learn generic features for traffic flow 

and trained in a greedy layer wise fashion. It implicitly takes 

into consideration the spatial and temporal correlations in the 

modeling and achieves superior performance. A probabilistic-

tic graphical model, namely the Poisson dependency network 

(PDN), has been learned in [61] to describe empirical vehicular 

traffic dataset and then used for traffic flow prediction. The 

strong correlations between cellular connectivity and vehicular 

traffic flow have been further leveraged to enhance prediction 

for both of them by means of Poisson regression trees. 

C. Vehicle Trajectory Prediction 

Vehicle trajectory prediction is of significant interest for 

advanced driver assistance systems (ADAS) in many tasks, 

such as collision avoidance and road hazard warning. It also 

plays an important role in networking protocol designs, such as 

handoff control, link scheduling, and routing, since network 

topology variations can be inferred from the predicted vehicle 

trajectories and exploited for communications performance 

enhancement. Probabilistic trajectory prediction based on 

Gaussian mixture models (GMM) and variational GMM has 

been studied in [62] to predict the vehicle’s trajectory using 

previously observed motion patterns. A motion model is 

learned based on previously observed trajectories, which is then 

used to build a functional mapping from the observed historical 

trajectories to the most likely future trajectory. The latent 

factors that affect the trajectories, such as drivers’ intention, 

traffic patterns, and road structures, may also be implicitly 

learned from the historical data using deep neural networks. 

More sophisticated models, such as RNN and LSTM, can 

potentially lead to better results for modeling the dynamics of 

vehicle trajectories and are worth further investigation. 

V. LEARNING BASED DECISION MAKING IN VEHICULAR 

NETWORKS 

The rich sources of data generated and stored in vehicular 

networks motivate a data-driven approach for decision making 

that is adaptive to network dynamics and robust to various 

impairments. Machine learning represents an effective tool to 

serve such purposes with proven good performance in a wide 

variety of applications, as demonstrated by some preliminary 

examples discussed in this section. 

A. Location Prediction Based Scheduling and Routing 

We have shown in Section IV that machine learning can be 

leveraged to learn the dynamics in high mobility vehicular 

networks, including vehicle trajectory prediction. In fact, the 

predicted dynamics can be further used towards networking 

protocol designs for system performance improvement. For 

example, the hidden Markov model (HMM) has been applied 

in [63] to predict vehicles’ future locations based on past 

mobility traces and movement patterns in a hybrid VANET 
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with both V2I and V2V links. Based on the predicted vehicle 

trajectories, an effective routing scheme has been proposed to 

efficiently select relay nodes for message forwarding and 

enable seamless handoff between V2V and V2I 

communications. A variable-order Markov model has been 

adopted in [64] to extract vehicular mobility patterns from 

real trace data in an urban vehicular network environment, 

which is used to predict the possible trajectories of moving 

vehicles and develop efficient prediction-based soft routing 

protocols. In [65], a recursive least squares algorithm has been 

used for large-scale channel prediction based on location 

information of vehicles and facilitate the development of a 

novel scheduling strategy for cooperative data dissemination in 

VANETs. 

B. Network Congestion Control 

Data traffic congestion is an important issue in vehicular 

networks, especially when the network conditions are highly 

dense in, e.g., busy intersections and crowded urban 

environments. In such cases, a large number of vehicles are 

vying for the available communication channels simultaneously 

and hence cause severe data collisions with increased packet 

loss and delay. To guarantee a reliable and timely delivery of 

various delay-sensitive safety-critical messages, such as BSMs, 

the vehicular networks need to have carefully designed 

congestion control strategies. Traditionally, there are five major 

categories of congestion control methods, namely rate-based, 

power-based, carrier-sense multiple access/collision avoidance 

based, prioritizing and scheduling-based, and hybrid strategies 

[66], which adjust communications parameters, such as 

transmission power, transmission rates, and contention window 

sizes, etc., to meet the congestion control purposes. 

Different from the traditional approaches, an effective ma-

chine learning based data congestion control strategy utilizing 

k-means clustering has been developed in [66] for congestion 

prone intersections. The proposed strategy relies on local road 

side units (RSUs) installed at each intersection for congestion 

detection, data processing, and congestion control to provide a 

centralized congestion management for all vehicles that are 

passing through or stop at the intersection. After detection of 

congestion, each RSU collects all data transferred among 

vehicles in its coverage, removes their redundancy, exploits k-

means algorithms to cluster the messages according to their 

features, such as sizes, validity, and types, and finally adjusts 

communications parameters for each cluster. 

C. Load Balancing and Vertical Control 

Due to periodicity of everyday traffic, potential patterns and 

regularities lie in the traffic flow and can be further exploited 

with learning based methods for load balancing and vertical 

control in vehicular networks. An online reinforcement learning 

approach has been developed in [67] to address the user 

association problem with load-balancing in the dynamic 

environment. The initial association is achieved based on the 

current context information using reinforcement learning. After 

a period of learning, with the association information being 

collected at the base station, the new association results will be 

obtained directly and adaptively using historical as-association 

patterns. Besides user association, the reinforcement learning 

based approach has also been applied in [68] to the vertical 

handoff design for heterogeneous vehicular networks. The 

network connectivity can be determined by a fuzzing Q-

learning approach with four types of information, namely, 

received signal strength value, vehicle speed, data quantity, and 

the number of users associated with the targeted network. With 

the learning based strategy, users can be connected to the best 

network without prior knowledge on handoff behavior. 

D. Network Security 

As intelligent vehicles become more connected and bring 

huge benefits to the society, the improved connectivity can 

make vehicles more vulnerable to cyber-physical attacks. As a 

result, security of information sharing in vehicles is crucial 

since any faulty sensor measurements may cause accidents and 

injuries. In [69], an intrusion detection system has been 

proposed for vehicular networks based on deep neural net-

works, where the unsupervised deep belief networks are used to 

initialize the parameters as a preprocessing stage. Then, the 

deep neural networks are trained by high-dimensional packet 

data to figure out the underlying statistical properties of normal 

and hacking packets and extract the corresponding features. In 

addition, LSTM is used in [70] to detect attacks on connected 

vehicles. The LSTM based detector is able to recognize the 

synthesized anomalies with high accuracy by learning to predict 

the next word originating from each vehicle. 

E. Intelligent Wireless Resource Management 

The current mainstream approach to wireless resource 

management is to formulate the design objective and 

constraints as an optimization problem and then solve for a 

solution with certain optimality claims. However, in high 

mobility vehicular networks, such an approach is insufficient. 

The first challenge arises due to the strong dynamics in 

vehicular networks that lead to a brief valid period of the 

optimization results in addition to the incurred heavy signaling 

overhead. The second issue comes with the difficulty to 

formulate a satisfactory objective to simultaneously consider 

the vastly different goals of the heterogeneous vehicular links, 

which is further complicated by the fact that some of the QoS 

formulations are mathematically difficult if not intractable. 

Fortunately, reinforcement learning provides a promising 

solution to these challenges through interacting with the 

dynamic environment to maximize a numeric reward, which is 

discussed in detail in this part. 

1) Virtual Resource Allocation 

Employing recent advances in software-defined networking 

(SDN) and network function virtualization (NFV), the 

traditional vehicular network can be transformed into a 

virtualized network offering improved efficiency and greater 

flexibility in network management. Future intelligent vehicles 
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and RSUs will be equipped with advanced sensing, computing, 

storage, and communication facilities, which can be further 

integrated into the virtualized vehicular network to provide a 

pool of resources for a variety of ITS applications, as illustrated 

in Fig. 3. In such a complicated system, how to dynamically 

allocate the available resources to end users for QoS 

maximization with minimal overhead is a nontrivial task. A 

delay-optimal virtualized radio resource management problem 

in software-defined vehicular networks has been considered in 

[71], which is formulated as an infinite-horizon partially 

observed MDP. An online distributed learning algorithm has 

been proposed to address the problem based on an equivalent 

Bellman equation and stochastic approximation. The proposed 

scheme is divided into two stages, which adapt to large time 

scale factors, such as the traffic density, and small timescale 

factors, such as channel and queue states, respectively. In [72], 

the resource allocation problem in vehicular clouds has been 

modeled as an MDP and reinforcement learning is leveraged to 

solve the problem such that the resources are dynamically 

provisioned to maximize long-term benefits for the network and 

avoid myopic decision making. Joint management of 

networking, caching, and computing resources in virtualized 

vehicular networks has been further considered in [73], where 

a novel deep reinforcement learning approach has been 

proposed to deal with the highly complex joint resource 

optimization problem and shown to achieve good performance 

in terms of total revenues for the virtual network operators. 

 

 
Fig. 3.  An illustration of virtualized vehicular networks 

 

2) Energy efficient resource management 

  Energy con-sumption should be taken into consideration, 

especially when RSUs in vehicular networks lack permanent 

grid-power con-nection. In [74], an MDP problem is formulated 

and solved using reinforcement learning techniques to optimize 

the RSUs’ downlink scheduling performance during a 

discharge period. The RSUs learn to select a vehicle to serve at 

the beginning of each time slot based on the collected 

information about traffic characteristics, infrastructure power 

budget, and the total length of a discharge period. The reward 

function is set as the performance metric for the total number of 

downloaded bits and the number of fulfilled vehicle requests 

per discharge period. Q-learning is then employed to solve the 

problem and obtain the highest reward in the long run. The 

framework can be further extended and augmented by deep 

reinforcement learning as in [75], where a deep reinforcement 

learning based scheduling scheme has been proposed that can 

overcome the drawback of using discrete states and actions. It 

first performs random scheduling policy and then gradually 

learns an adaptive dynamic policy to extend the battery life, 

minimize the reception latency, and achieve the QoS levels. 

Deep reinforcement learning augments the RSU with the ability 

to observe and analyze the environment and make decisions. 

 

3) Distributed resource management 

Most of resource allocation algorithms for D2D-based 

vehicular networks are conducted in a centralized manner, 

where the central controller collects information and makes 

decisions for all the vehicles by solving optimization problems. 

However, In order to acquire the global network information, 

centralized control schemes will incur huge overhead, which 

grows dramatically with the size of vehicular networks. As 

shown in Fig. 4, we have proposed a deep reinforcement 

learning based decentralized resource allocation mechanism for 

vehicular networks [76], where the mapping from the partial 

observations of each vehicle agent to the optimal resource 

allocation solution can be approximated by deep neural 

networks. The merit of reinforcement learning based method is 

that it can address stringent latency requirements on V2V links, 

which is usually hard to deal with using existing optimization 

approaches. 

 
Fig. 4.  Deep reinforcement learning for vehicular networks 

 

4) The V2I link is assumed to have been allocated 

orthogonal resources beforehand and the main goal of the 

proposed distributed spectrum and power allocation is to satisfy 

the latency constraints for each V2V link and minimize 

interference to V2I links. The structure of reinforcement 

learning for V2V communications is shown in Fig. 4, where an 

agent, corresponding to a V2V link, interacts with the 

environment. In this scenario, the environment is considered to 

be everything beyond the V2V link. Since the behavior of other 

V2V links is controlled by other agents in the decentralized 

settings, their actions are treated as part of the environment. As 

shown in Fig. 4, at time t, each an agent, i.e., each V2V link, 

observes a state, sT, from the state space, S, and accordingly 

takes an action, aT, selected from the action space, A, which 

amounts to selecting the sub-band and transmission power 

based on the policy, π. The decision policy, π, is determined by 

a Q-function, Q (sT, aT, θ), where θ is the parameter of the Q-
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function. With actions taken, the environment transitions to a 

new state, sT+1, and the agent receives a reward, rT, which is 

determined by the capacity of the V2I link and V2V link as well 

as the corresponding latency. The state observed by each V2V 

link consists of several components: the instantaneous channel 

information of the corresponding V2V link, gT, the previous 

interference to the link, IT−1, the channel information of the V2I 

link, hT, the selection of sub-bands of neighbors in the previous 

time slot, BT−1, the remaining load for the vehicles to transmit, 

LT, and the remaining time to meet the latency constraints UT. 

Hence the state can be expressed hT, BT-1
 information and the 

received interference relate to the quality of each sub-band. The 

distribution of neighbors’ selection reveals the interference to 

other vehicles. In addition, the remaining amount of messages 

to transmit and the remaining time could be useful for selecting 

suitable power levels. Q-learning is employed to obtain an 

optimal policy for resource allocation in V2V communications 

to maximize the long-term expected accumulated discounted 

rewards, GT, where the Q function is approximated by a deep 

neural network. The optimal policy with Q-values Q∗ can be 

found without any knowledge of the underlying system 

dynamics based on the following update equation, 

 

NEW T T OLD T T

T+1 OLD T OLD T T
sÎ S

Q (S ,a )=Q (S ,a )

+α r +βMAX Q (S,a )-Q (S ,a ) 
  

  (4) 

 

 
Fig. 5.  Failure probability versus the number of vehicles 

 

The training and testing samples are generated from an 

environment simulator, which consists of V2V links and V2I 

links as well as their channel strengths. The vehicles are 

randomly dropped and the channel strengths for V2V and V2I 

links are generated based on the positions of the vehicles. With 

the selected spectrum and power of V2V links, the simulator 

can provide the next state, sT+1, and the reward, rT, to the agents. 

The training samples generated for optimizing the deep neural 

network consist of sT, sT+1, aT, and rT. 

The deep reinforcement learning based resource allocation 

scheme is compared with two methods. The first is a random 

resource allocation method, where the agent randomly chooses 

a sub-band for transmission at each time. The other method is 

from [77], where vehicles are first grouped into clusters 

according to the similarities of V2V links and then the sub-

bands are allocated and adjusted iteratively in each cluster for 

better performance. Fig. 5 shows the probability that V2V links 

violate the latency constraint versus the number of vehicles. 

From the figure, the deep reinforcement learning method has a 

smaller probability for V2V links violating the latency 

constraint since it can dynamically adjust the power and sub 

band for transmission so that the links that are likely to violate 

the latency constraint have more resources. 

VI. OPEN ISSUES 

 Even though remarkable progress has been made by ma-

chine learning in various areas, it is still insufficient to just 

naively apply the existing learning algorithms in vehicular 

networks due to their distinctive characteristics. In this section, 

we discuss several issues that need further attention. 

A. Learning Dynamics of Vehicular Networks 

In high mobility vehicular networks, it is challenging to 

predict wireless channels based on the received signal and 

historical data. In addition, due to the high mobility of users and 

advanced techniques being adopted, such as MIMO and 

millimeter wave communications, new challenges arise on the 

task of estimating the high dimensional fast-varying wireless 

channel. Conventionally, the temporal relationship in data is 

characterized by Bayesian models, such as the HMMs. 

Recently, sophisticated models powered by deep neural net-

works, such as RNN and LSTM, can potentially improve the 

prediction by exploiting the long-range dependency. Deep 

learning has also shown strong abilities to efficiently distill high 

dimensional data by exploiting properties such as sparsity. 

Therefore, it is interesting to investigate whether deep neural 

networks can assist or even replace the existing channel 

estimation mechanism, where a large number of pilot symbols 

are expended to track channel variation. 

B. Method Complexity 

Unlike traditional machine learning techniques that require 

much effort on feature design, deep neural networks provide 

better performance by learning the features directly from raw 

data. Hence, information can be distilled more efficiently in 

deep neural networks than the traditional methods. It has been 

shown by experimental results that the deep hierarchical 

structure is necessary. Recently, in order to enhance the 

representation ability of the model, more advanced 

technologies have since been devised. Moreover, with high-

performance computing facilities, such as graphics processing 

unit (GPU), deep networks can be trained with massive 

amounts of data through advanced training techniques, such as 

batch norm [54] and residual networks [55]. However, 

computation resources aboard vehicles are rather limited and 

because of the stringent end-to-end latency constraints in 

vehicular networks, the use of power servers housed remotely 

for computation would also be confined. As a result, special 

treatments, such as model reduction or compression, should be 
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carefully developed to alleviate the computation resource 

limitation without incurring much performance degradation. 

C. Distributed Learning 

Different from most existing machine learning algorithms 

that assume easy availability of data, in vehicular networks, 

however, the data is generated and stored distributed across 

different units in the network, e.g., vehicles, RSUs, remote 

clouds, etc. As a consequence, distributed learning algorithms 

should be carefully designed so that they can act only on 

partially observed data and have the ability to exploit 

information obtained from other entities in the network. 

Furthermore, to address the communication cost, additional 

overheads brought by information sharing among the vehicular 

networks for distributed machine learning algorithms shall be 

properly taken into account to make the system work 

effectively. 

D. Coordination and Cooperation 

The vehicular networks can be considered as a multi-agent 

system, where cooperation and coordination play important 

roles in helping reach system level optimal performance 

through sharing necessary information with surrounding 

agents. Each individual agent can thus get more informed about 

the environment and jointly optimize its performance with other 

agents in the network. With machine learning, each agent is able 

to learn what they need to share based on what they have 

perceived and what they need to do, with minimal network 

signaling overhead. 

In traditional multi-agent systems, the communication cost is 

not considered and the communication messages are assumed 

to be error and delay free. For high mobility vehicular networks, 

however, realistic constraints posed by the harsh environments 

should be considered. For example, the resources for 

communication, e.g., transmit power and bandwidth, are 

limited and the channel quality is time-varying. When the 

channel is in deep fading, received data suffer from severe 

errors [78]. As a result, developing coordination and 

cooperation schemes for the multi-agents while taking the 

wireless constraints into consideration needs to be further 

explored. 

E. Security 

Machine learning has been shown to be beneficial to con-

front cyber-physical attacks, which threat the safety of 

vehicular networks. Ironically, it also raises tremendous 

potential challenges and risks by itself since the machine 

learning based system can produce harmful and unexpected 

results [79]. For instance, the convolutional neural networks 

can be easily fooled by maliciously designed noised images 

[80] while the agents in reinforcement learning may find 

undesirable ways to enhance the reward [81]. As a 

consequence, even though machine learning has shown 

remarkable improvement in numerous areas, significant efforts 

should be made to improve the robustness of machine learning 

methods before they come to the safety-sensitive areas, such as 

vehicular networks, where minor errors may lead to disastrous 

consequences. 

VII. CONCLUSION 

In this article, we have investigated the possibility of applying 

machine learning to address problems in high mobility 

vehicular networks. Strong dynamics exhibited by such types 

of networks and the demanding QoS requirements challenge the 

state-of-the-art communications technologies. Machine 

learning is believed to be a promising solution to this challenge 

due to its remarkable performance in various AI related areas. 

We have briefly introduced the basics of machine learning and 

then provided some examples of using such tools to learn the 

dynamics and then perform intelligent decision making in 

vehicular networks. We have further highlighted some open 

issues and pointed out areas that require more attention. 
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