Odd and Even Formation for Graceful Labeling

G. Rohith¹, M. Karthigeyan²

¹M. Phil. Scholar, Dept of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India
²Assistant Professor, Dept of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India

Abstract—Over the past decades, graph theory has established itself as a worthwhile mathematical discipline and there are many application of graph theory to a wide variety of subjects. Labeled graph have several type of application in secret writing theory. Tagged graph plays vital role within the study of X-ray physics, communication network and to see best circuit layouts. Labeling of a graph is an assignment of labels (numbers) to its edges that satisfy some conditions. Graph labeling has become a vigorous space in graph theory [1-6].

Index Terms—Graceful Labeling, Vertex, Cycle, Edge

I. INTRODUCTION

The graph theory is one in all the sector of separate arithmetic that cuts across wide ranges of disciplines of human understanding not solely within the space of maths. The later a part of last century has witnessed intense activity in graph theory. Development of engineering science intensify the analysis add the sector. There are several fascinating field of analysis in graph theory. A number of them square measure domination in graph, coloring graph, topological graph theory, fuzzy graph theory ad labeling of separate structures [1-6].

Definition: 1.1

If the vertices area unit appointed values subject to sure conditions then it’s called graph labeling.

Definition: 1.2

A function f is called graceful labeling of a graph G if f (V) V → {0,1,...,q} is injective and the inducted function f*: E → {0,1,..., q} defined as

\[f(e = uv) = |f(u) - f(v)| \]

be the bijection. A graph which admits graceful labeling is called a graceful graph.

II. MATHEMATICAL FORMULATION

Theorem:

Duplication of a discrentional vertex of Gm which produces a sleek graph.

Proof:

Let v₁, v₂, v₃, . . . , vₘ be the vertices of the cycle Cₘ and G be the graph obtained by duplicating an arbitrary vertex of Cₘ. Without loss of generality let this vertex be v₁ the newly added vertex be v₁'. To define f (V) → {0,1,2,3 . . . , q} following four cases are to be considered.

Case (i)

When \(m \equiv 0 (mod \ 4); \ m \equiv 4 \)

\[f(v₁') = 0 \]
\[f(vᵢ) = \frac{m}{2} + 1 \]
\[f(vᵢ) = (m + 2) - \left(\frac{i-1}{2}\right); \ when \ i \ is \ even \ and \ for \ 2 \leq i \leq \frac{m}{2} + 2 \]
\[= \frac{i-1}{2}; \ when \ i \ is \ odd \ and \ for \ 2 \leq i \leq \frac{m}{2} + 2 \]
\[f(vᵢ) = (m + 2) - \left(\frac{i-1}{2}\right); \ when \ i \ is \ odd \ and \ for \ \frac{m}{2} + 3 \leq i \leq m \]
\[= \frac{i-2}{2}; \ when \ i \ is \ even \ and \ for \ \frac{m}{2} + 3 \leq i \leq m \]

If \(m = 4 \) is to be dealt separately.

Case (ii)

When \(m \equiv 1 (mod \ 4) \)

\[f(v₁') = 0 \]
\[f(vᵢ) = \frac{m+1}{2} \]
\[f(vᵢ) = (m + 2) - \left(\frac{i-2}{2}\right) ; \]
when \(i \) is even and for \(2 \leq i \leq \frac{m+1}{2} \)
\[= \frac{i-1}{2}; \ when \ i \ is \ odd \ and \ for \ 2 \leq i \leq \frac{m+1}{2} \]
\[f(vᵢ) = \left(\frac{i}{2}\right) ; \]
when \(i \) is even and for \(\frac{m+3}{2} \leq i \leq m \)
\[= (m + 2) - \left(\frac{i-2}{2}\right) ; \]
when \(i \) is odd and for \(\frac{m+3}{2} \leq i \leq m \)

Case (iii)

When \(m \equiv 2 (mod \ 4); \ m \neq 6 \)

\[f(vᵢ') = 0 \]
\[f(vᵢ) = \frac{m}{2} + 3 \]
\[f(vᵢ) = (m + 2) - \left(\frac{i-2}{2}\right) ; \]
when \(i \) is even and for \(2 \leq i \leq \frac{m+4}{2} \)
\[= \frac{i-1}{2} ; \]
when \(i \) is odd and for \(2 \leq i \leq \frac{m+4}{2} \)
\[f(vᵢ) = \left(\frac{i}{2}\right) ; \ for \ i = \frac{m+4}{2} + 1 \]
\[f(vᵢ) = (m + 2) - \left(\frac{i-2}{2}\right) ; \]
when \(i \) is odd and for \(\frac{m+4}{2} \leq i \leq m \)
\[= \frac{i+2}{2} ; \]
when \(i \) is even and for \(\frac{m+4}{2} \leq i \leq m \)

For \(n = 6 \); the corresponding graph and its graceful labeling is shown.
When \(m \equiv 3 \pmod{4} \)
\[
 f(v^*_i) = \begin{cases}
 0 & \text{when } i \text{ is even and for } 1 \leq i \leq \frac{m+1}{2} \\
 \frac{m+1}{2} - \frac{i-1}{2} & \text{when } i \text{ is odd and for } 1 \leq i \leq \frac{m+1}{2}
 \end{cases}
\]

\[
 f(v_i) = \begin{cases}
 \frac{m+1}{2} - \frac{i-2}{2} & \text{when } i \text{ is even and for } 2 \leq i \leq \frac{m+1}{2} \\
 (m + 2) - \frac{i-1}{2} & \text{when } i \text{ is odd and for } 2 \leq i \leq \frac{m+1}{2}
 \end{cases}
\]

\(*\) in cycle \(C_m \).

The graceful labeled ascribed by the vertex in cycle \(C_m \).

Illustration:

The graph obtained by duplicating the vertex \(v_1 \) of cycle \(C_8 \) is shown in Figure. (For case-I: \(m \equiv 0 \pmod{4} \)) and \(e_1(0) = 8 \) and \(e(1) = 8 \).

Theorem:

An Edge of cycle of Even Order is in Graceful labeling

Proof:

Let us assume that \(v_1, v_2, … v_m \) are vertices of the cycle \(C_m \), where \(m \) is even and \(G \) be the graph on edge of \(C_m \).

Without loss of generality assume that \(e_1 = v_1 v_2 \) be the newly added edge to duplicate the edge \(e_1 = v_1 v_2 \) in \(C_m \).

To define \(f(V) \rightarrow \{0, 1, 2, 3, \ldots , q\} \) following two cases are to be considered.

Case (i)

\[
 m \equiv 0 \pmod{4}; \ m \neq 4, \ m \neq 8
\]

\[
 f(v^*_i) = \frac{m}{2} + 4
\]

\[
 f(v^*_2) = \frac{m}{2}
\]

Case (ii)

\[
 f(v_i) = \begin{cases}
 (m + 3) - \frac{i-1}{2} & \text{when } i \text{ is odd and for } 1 \leq i \leq \frac{m}{2} + 2 \\
 \frac{i-2}{2} & \text{when } i \text{ is even and for } 1 \leq i \leq \frac{m}{2} + 2
 \end{cases}
\]

\[
 f(v^*_i) = \begin{cases}
 \frac{i-1}{2} & \text{for } i = \frac{m}{2} + 3 \\
 (n + 3) - \frac{i}{2} & \text{when } i \text{ is even and for } \frac{m}{2} + 4 \leq i \leq m - 1 \\
 \frac{i-1}{2} & \text{when } i \text{ is odd and for } \frac{m}{2} + 4 \leq i \leq m - 1
 \end{cases}
\]

\[
 f(v^*_m) = \frac{m}{2} + 2
\]

The labeling for the graphs corresponding to \(C_4 \) and \(C_8 \) are to be dealt separately.

Case (ii)

When \(m \equiv 2 \pmod{4} \)

\[
 f(v^*_i) = \frac{m}{2} - 1
\]

\[
 f(v^*_2) = \frac{m}{2}
\]

\[
 f(v_i) = \begin{cases}
 (m + 3) - \frac{i-1}{2} & \text{when } i \text{ is odd and for } 1 \leq i \leq \frac{m}{2} + 2 \\
 \frac{i-2}{2} & \text{when } i \text{ is even and for } 1 \leq i \leq \frac{m}{2} + 2
 \end{cases}
\]

\[
 f(v^*_i) = \begin{cases}
 \frac{i-1}{2} & \text{for } i = \frac{m}{2} + 3 \\
 (n + 3) - \frac{i}{2} & \text{when } i \text{ is even and for } \frac{m}{2} + 4 \leq i \leq m - 1 \\
 \frac{i-1}{2} & \text{when } i \text{ is odd and for } \frac{m}{2} + 4 \leq i \leq m - 1
 \end{cases}
\]

Therefore, the function \(f \) provides graceful labeling for the graph obtained by the duplication of an edge in even cycle \(C_m \).

III. Conclusion

The graceful labeling on the vertex and edge through the odd or even or both of the graph \(G \) are discussed. From the point of view the even term of graceful label assigned on the vertices and on the edge \(C_m \).

References

