
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

880

Abstract— Data Compression algorithms have gained immense

popularity in recent decades. This sector of Computer Science

industry is the new budding field with lots of opportunities. Data

is the process of modifying, encoding or converting the bits

structure of data compression in such a way that it consumes less

space on disk, it enables reducing the storage size of one or more

data instances or elements. Data compression is also known as

source coding or bit-rate reduction. Data compression has wide

implementation in computing services and solutions, specifically

Data communications. Data compression works through several

compressing techniques and software solutions that utilize data

compression algorithms to reduce the data size. The project

focuses on enhancing Huffman’s Algorithm for greedy approach

and combining the LZ77 Algorithm to create a new Algorithm that

can perform lossless compression of data. . So, the most important

question today is what to do with all this data. Whether to discard

it? Certainly not. Whether to keep building new storage units?

Well, that can certainly be an option. But what if we can reduce

the size of this data? That would be the best alternative to building

more powerful storage devices. This is what we call Data

Compression. This is how we would be able to solve most of ‘ur

problems with the management of data that we are facing today.

This project deals with the same: ‘Data Compression’. Although

Data Compression is not something which has been discovered

very recently. The concept has been lying about since years. A lot

of goals have certainly been achieved, but yet there is a lot to be

discovered.

Index Terms— Lempel Ziv 77 Algorithm, Data compression,

Huffman’s Greedy Approach

I. INTRODUCTION

In signal processing, data compression, source coding, or bit-

rate reduction involves encoding information using fewer bits

than the original representation. Compression can be either

lossy or lossless. Lossless compression reduces bits by

identifying and eliminating statistical redundancy. No

information is lost in lossless compression. Lossy compression

reduces bits by removing unnecessary or less important

information. The process of reducing the size of a data file is

often referred to as data compression. In the context of data

transmission, it is called source coding; encoding done at the

source of the data before it is stored or transmitted. Source

coding should not be confused with channel coding, for error

detection and correction or line coding, the means for mapping

data onto a signal.

II. BACKGROUND

A new prediction algorithm has proposed which predicts

whether a file would or would not compress with the LZW

Technique. It also predicts the compression Ratio which helps

storage systems to decide whether the file should be

compressed or not (helping in auto-accommodation of file).

This method reduces the compression time by 17.79 %. For

energy saving in wireless sensor networks a new lossless

compression algorithm has proposed (S-LEC) and compares it

with the existing algorithm which are LEC and S-LZW. This

method has been applied on wireless data sets like Volcano data

and Humidity data. The S-LEC is robust and more efficient than

both LEC and S-LZW. In 2008 Aree A. Muhammad and Loay

E. George proposed a new scheme for image compression that

works on two stages. The first stage uses a lifting scheme

wavelet-based transform. For the second stage they developed

a modified entropy coding algorithm. Their proposed scheme

was tested and showed that the quality maintains the same

regardless of the different coding techniques used. They

achieved a good compression factor with block sublevel coding

algorithm but the computational time was

III. PROPOSED METHOD

Huffman’s Greedy Approach and LZ77 Algorithms are both

efficient algorithms but do not compress data to their full

potential. Their compressing power can be increased by

combining them together. Huffman’s greedy approach is totally

based on the frequency of each element in the input text. While

LZ77 focuses on reducing redundancy by associating

commonly occurring phrases with pointers, thereby making the

text itself more compressible to be fed into Huffman’s

Algorithm. Also, the Huffman’s greedy approach is a bottom to

top approach. This although an easy to understand and effective

approach fails to use the full potential of the tree. And the

resultant of this approach is an increased height of the tree.

Since the compressibility of the text is inversely proportional to

the height of the tree. This is not the best compression which

could be deduced from this approach. What is proposed is the

creation of a tree in such a manner such that the allocation of

memory for the next level does not begin till the nodes of the

previous level all have their children nodes.

Data Compression Using Huffman’s Greedy

Approach and LZ 77

K. Subha1, Yash Mohata2, Jambay Yeshi3, Ashutosh Digari4

1Assistant Professor, Department of Computer Science Engineering, SRM IST, Chennai, India
2,3,4Student, Department of Computer Science Engineering, SRM IST, Chennai, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

881

A. Algorithm

 Start

 Input Data

 Application Of Lp77

 Finding The Frequency Of Elements

 Sorting In Descending Order

 Starting Allocation Of Tree

 Do While (Node(Level-1) ==True)

 If (Node(Level-1) Has All Children)

 Continue Allocation To The Next Level Else

 Allocate Children Nodes To The Unallocated

Node(Level-1)

IV. IMPLEMENTATION

To understand the probability-based approach let us take an

easy example below is a simple table describing the decoding

of a simple textual data consisting of five characters: A, B, C,

D, E. We have already given a table describing the probabilities

of finding those characters and we are going to use these values

throughout our calculations. The entities mentioned in the table

are as follows:

 Character: Represents the character under

consideration

 Probability: Represents the probability of finding the

character

 Representation: The representation of the character

according to the common representation or with the

help of the binary tree

 Cost/Bit: Effective Cost/Bit

 Total Cost: Total Cost

The formula for calculating other quantities are as follows:

Total Cost = Probability * (Cost/Bit)

Final Cost= ∑ Total Cost

A. Normal Approach to Compression

In this approach we use the normal method of representation

of characters during algorithm. To represent characters in bits,

the no. of bits depends upon the no. of characters. Suppose we

want to transmit two characters a and b: then we need one single

bit: 0 and 1. But as we have a third character to transmit c: we

would need two bits at a time to transmit each of a, b and c: 00

01 10. So, since we have only 5 characters here we can easily

represent them with the help of permutation of 3 bits.
TABLE I

NORMAL APPROACH

The total cost by this method comes out to be 3.0

B. Huffman’s Greedy Approach

For this approach we arrange the characters in a binary tree

in the decreasing order of their probability, from top to down.

The right branch sums up for a 1-bit representation and the left

one for a 0-bit representation. Thus if we tabulate our

observation from the above approach we get the following:

Fig. 1. Huffman’s Greedy Approach

TABLE II

HUFFS MAN’S GREEDY APPROACH

By using the Huffman’s greedy approach, we get a Total

Effective final cost of 2.03.

The Huffman’s greedy approach is a bottom to top approach.

This although an easy to understand and effective approach fails

to use the full potential of the tree. And the resultant of this

approach is an increased height of the tree. Since the

compressibility of the text is inversely proportional to the height

of the tree. This is not the best compression which could be

deduced from this approach.

C. Proposed Approach

For this approach we arrange the characters in a binary tree

in the decreasing order of their probability, from top to down.

The right branch sums up for a 1-bit representation and the left

one for a 0-bit representation. But we would not be moving on

to the next level of the tree till the entire level is filled. Since

the compressibility of the text is inversely proportional to the

height of the tree. Huffman’s is not the best compression which

Character Probability Representation Cost/Bit Total

cost

A 0.04 000 3 0.12

B 0.12 001 3 0.36

C 0.45 010 3 1.35

D 0.23 011 3 0.69

E 0.16 100 3 0.48

Total Cost 3.0

Character Probability Representation Cost/Bit Total cost

A 0.04 1110 4 0.16

B 0.12 1111 4 0.48

C 0.45 0 1 0.45

D 0.23 10 2 0.46

E 0.16 110 3 0.48

Total

Cost

 2.03

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

882

could be deduced from this approach. What is proposed is the

creation of a tree in such a manner such that the allocation of

memory for the next level does not begin till the nodes of the

previous level all have their children nodes.

Fig. 2. Proposed approach

TABLE III

PROPOSED APPROACH

Huffman’s Greedy Approach and LP77 Algorithms are both

efficient algorithms but do not compress data to their full

potential. Their compressing power can be increased by

combining them together. Huffman’s greedy approach is totally

based on the frequency of each element in the input text. While

LP77 focuses on reducing redundancy by associating

commonly occurring phrases with pointers, thereby making the

text itself more compressible to be fed into Huffman’s

Algorithm. Also, the Huffman’s greedy approach is a bottom to

top approach. This although an easy to understand and effective

approach fails to use the full potential of the tree. And the

resultant of this approach is an increased height of the tree.

Since the compressibility of the text is inversely proportional to

the height of the tree. This is not the best compression which

could be deduced from this approach. What is proposed is the

creation of a tree in such a manner such that the allocation of

memory for the next level does not begin till the nodes of the

previous level all have their children nodes.

Fig. 3. Comparison

V. CONCLUSION

In this paper, to achieve better compression rates, we

combined the Huffman’s Greedy Approach and Lempel-Ziv 77

Algorithms. The Huffman’s Greedy Algorithm has a

Probability based approach while LP77 focuses on reducing the

redundancy of the file. Therefore, we intend to first preprocess

the data into a more compressible form and the compressing it

by feeding it into our Algorithm. We have proposed the creation

of a tree in such a manner such that the allocation of memory

for the next level does not begin till the nodes of the previous

level all have their children nodes.

VI. FUTURE WORK

In this paper there’s lack of sample space to compare our

proposed model with the existing models. Hence, we will be

focusing on coming up with larger and more varied sample

spaces to get an accurate comparison and analyze the results.

Currently we are facing a lack of appropriate hardware to

actually test the true potential of our proposed algorithm and

also compare it with the test results of the existing approaches.

So, testing our proposed algorithm on appropriate hardware and

analyzing the results of the same is something we’d like to

accomplish in the near future.

REFERENCES

[1] Komal Sharma, Kunal Gupta. “Lossless Data Compression Techniques

and Their Performance.” Department of Computer Science, Amity

University, Noida, Uttar Pradesh, ICCCA 2017.

[2] Chang-Wen Chen, Yi-Cheng Kong and Kuen-Jong Lee. “Test

Compression with Single-Input Data Spreader and Multiple Test

Sessions.” Department of Electrical Engineering, National Cheng Kong

University, IEEE 26th Asian Test Symposium, 2017.

[3] Amit Jain, Ravindra Patel. “An Efficient Compression Algorithm (ECA)

for Text Data.” International Conference on Signal Processing Systems,

2017.

[4] Dapeng Dong and John Herbert. “Compressed Domain-Specific Data

Processing and Analysis.” Department of Computer Science, University

College Cork, Ireland. IEEE International Conference on Big Data 2017

[5] Devi Dath and Vinitha Panicker J. “Enhancing Adoptive Huffman Coding

Through Word by Word Compression for Textual Data.” International

Conference on Communication and Signal Processing, April 6-8, 2017,

India.

[6] S Jancy, Dr. C Jayakumar. “Various Lossless Compression Techniques

Surveyed.” Professor, Department of Computer Science, Sathyabama

University, Chennai, India. ICONSTEM 2017.

[7] Adam Gleave, Christian Steinruecken. “Making Compression Algorithms

for Unicode Text.” University of Cambridge. Data Compression

Conference 2017.

[8] Koichi Marumo, Shinichi Yamagiwa. “Time Sharing Multithreading on

Stream-based Lossless Data Compression.” Department of Computer

Science/Faculty of Engineering, Information and System. 5th

International Symposium on Computing and Networking 2017.

[9] Ahmed S. Farhan, Fouad H. Awad-MIEEE, Khitam Abdulbasit,

Mohammed Adeeb. “Proposed Two Shift-Coding Based compression

Techniques.” College of Business Informatics, University of Information

Technology & Communication, Iraq/Computer Science Department,

College of Computer-University of Anbar,Iraq. 2017 ICCCIT, Slemani,

Iraq.

[10] M M Kodabagi, M.V Jerabandi, Nagaraj Gadagin. “Multilevel Security

and Compression of Text Data using Bit Stuffing and Huffman Coding.”

Dept. of Computer Science and Engineering KLE Institute of Technology,

Hubli, India. 2015 ICATCCT.

CHARACTER PROB

ABILIT

Y

REPRESENTAT

ION

COST/BIT TOTAL

COST

A 0.04 001 3 0.12

B 0.12 000 3 0.36

C 0.45 0 1 0.45

D 0.23 00 2 0.46

E 0.16 01 2 0.32

TOTAL COST 1.71

