

Experimental Research of Firmness and Longevity Properties of Hybrid Fiber Reinforced Concrete for M25 Grade

Yellu Rahul Teja¹, V. Radha Krishna², B. Vinodh³

^{1,3}Assistant Professor, Dept. of Civil Engineering, Sree Venkateswara College of Engineering, Nellore, India ²PG Student, Dept. of Civil Engineering, Sree Venkateswara College of Engineering, Nellore, India

Abstract—A mid all the construction materials that are obtainable for construction, we know that concrete is a widely used construction material for building of various civil engineering structures. Concrete will give more long lasting and also its costs during construction as well as maintenance are very little when As we know that concrete is strong in compression and weak in tension and show tendency to fail because of its dearth such as low tensile strength, low strain at clevage. The weakness of concrete is due to the existence of fine alliance cracks at mortar aggregate interface. To overcome the surveying problems addition of fibers in the concrete has been taken into practice. In fiber reinforced concrete the fibers are added to concrete mix so that there are discontinuous fibers uniformly distributed in the concrete mix and upgrade the concrete properties in all directions. To get more betterment in the mechanical properties of concrete investigation has been done by combining two different types of fibers knows as hybridization.

In present experimental work forM25 grade of concrete can be designed according to IS 10262:2009 with four different proportions of hybrid fibers are added with concrete mix. The proportion of steel and polypropylene fibers are added by 50% each with different hybridization ration i.e. 0%,0.5%, 1.0%, 1.5% and steel fibers are added by volume of concrete and polypropylene is added by weight of cement. For strength parameters compressive, tensile, flexural, impact strength specimens are casted and cured for 28 days and tested for hardened hybrid fiber reinforced concrete. To evaluate the strength parameters different tests are conducted and results are tabulated. From the present work results show that 1.5% addition of hybrid fiber gives supreme results in all the strength parameters compared to other different hybrid ratios.

Index Terms—Steel fibers, Polypropylene, Compressive tensile strength, Flexural strength, Impact strength.

I. INTRODUCTION

In early days the most of the constructions are of mud and lime. Later in the construction field Concrete became a boon of construction and its strength properties created tremendous revolution in construction practice. Due to its high strength and long living properties it is largely used in all the sectors. As Concrete is exposed to different environmental condition to withstand the natural effects the properties of normal concrete has to be ascended. This can be achieved by adding admixtures like fibers to concrete.

Conventional concrete have better compressive strength and is poor in tensile as well as in flexural strength. So for improve concrete tensile as well as flexural strength it is required to add any innovative materials like fibers, admixture, and waste material having good pozzolanas properties, construction chemical. Cement mortar and concrete made with Portland cement is a kind of most commonly used construction material in the universe. These materials have inherently brittle nature and have some dramatic disadvantages such as poor deformability and weak crack resistance in the practical usage. Also their tensile strength and flexural strength is relatively low compared to their compressive strength. The weakness in tension can be overcome by the use of sufficient volume fraction of certain fibers like steel, polypropylene, nylon, polyester, glass; carbon fibers are used to increase the strength of normal concrete.

A. Fiber Reinforced Concrete

Fiber reinforced concrete (FRC) is concrete obtained by the addition of fibers to concrete. These Fibers include steel, glass, synthetic and natural fibers. The weakness in tension can be reduced by the use of sufficient volume in fraction of certain fibers. In order to enhance the mechanical properties of concrete it is good to mix cement with fiber which have good tensile strength. Adding fibers to concrete greatly increases the toughness of the material. The use of fibers also alters the behavior of the fiber matrix composite after it has cracked, thereby improving its toughness. In the beginning, FRC was primarily used for pavements and industrial floors but currently, the FRC is being used for a wide variety of applications including bridges, tunnel and canal linings, hydraulic structures, pipes, explosion-resistant structures, cladding and roller compacted concrete. The use of FRC in structural members such as beams, columns, slabs and pre-stressed concrete structures is being investigated by a number of researchers at present in India and abroad.

II. VARIETIES OF FIBERS

Various types of fibers is manufactured with different

technology. Every fiber has its unique properties with good strength parameters and most commonly used fibers in concrete are as follows.

- Steel fiber.
- Polypropylene fiber.
- Carbon fiber.
- Polyesters fiber.
- Asbestos fiber.
- Glass fiber.
- Organic fiber.

Steel fibers are the mostly used fibers for many applications, other types of fibers are more suitable for special implementations. Fiber addition in the concrete brings a better control of its cracking and enhances its mechanical properties. Particularly, it imparts the material a post cracking load carrying capacity, ductility. The metal and, more particularly, steel fibers are most largely engaged. Initially used in pavements and slabs on soil, their applicability is now extended to the case of structural elements such as piles, beams and selfsupporting cladding elements spread linings, and repairs or reinforcements of tunnels. walls, or floors. Polypropylene/Nylon Fibers are Suitable to increase impact strength of concrete. Possess high tensile strength but their low modulus of elasticity and higher elongation do not contribute to the flexural strength.

III. HYBRID FIBER REINFORCED CONCRETE

Every Fiber has unique strength characteristic and gives strength to the concrete. When two different fibers are mixed with concrete to make the composite structure that gives maximum strength to concrete that type of concrete is hybrid fiber reinforced concrete (HFRC). Addition of fibers like steel and polypropylene, steel and glass, glass and polypropylene, steel and polyester etc. these are hybrid ratio of HFRC with different mix proportion and variation of fibers in concrete. By using HFRC the concrete turns stronger because of the fibers that we added may be good in tensile strength, crack resistance, avoids initial cracks, shrinkage of concrete may be decreased.

HFRC gives more strength and gives best results compared to FRC due to the addition of two different fibers in concrete. One type of fiber which is stronger and stiffer helps in upgrading first crack stress and ultimate strength, and second type of fiber upgrades the toughness and strain in post cracking zone of the concrete. HFRC concrete may increases the tensile strength with holding the crack of concrete. HFRC improves the strength and toughness of concrete due to addition of fibers in concrete compared to other usual concrete.

IV. OBJECTIVES OF THE STUDY

• To study the different strength parameters like compressive strength, tensile strength, flexural strength of hybrid fiber reinforced concrete with

different mix proportion of fibers forM25 grade concrete.

- To determine impact resistance properties on the hybrid fiber reinforced concrete and comparing with the conventional concrete.
- To know the optimum percentage of addition of fibers to concrete and finding maximum hybrid ratio.
- To determine workability of hybrid fiber reinforced concrete by the addition of fibers in concrete mix.
- To study the durability properties of hybrid fiber reinforced concrete.

V. MATERIALS

This chapter deals with the materials used in this research and the various tests conducted on them and also along with approch of mix proportion with different proportions of addition of steel fibers in the concrete. In this chapter properties of the materials which are used for the project are discussed and also along with their permissible limits according to the standards. The place from where the materials are taken also mentioned. The following are the materials used in the experimental work.

- 1) Cement
- 2) Fine aggregate
- 3) Coarse aggregate
- 4) Water
- 5) Steel fibers
- 6) Polypropylene fibers

1) Cement

Cement used is ordinary Portland cement (OPC) having 53 grade as per IS 12269-1970 cement is used as a binding material in the current investigation. The initial tests like normal consistency (amount of water to be added), specific gravity, initial and final setting time, soundness of cement tests is conducted and results are listed below.

TABLE I

PHYSICAL PROPERTIES OF CEMENT				
Properties	Results			
Specific gravity	3.14			
Soundness of cement	5 mm			
Normal consistency	30%			
Initial setting time	37 minutes			
Final setting time	480 minutes			

2) Fine aggregate

TABLE II PHYSICAL PROPERTIES OF FINE AGGREGATE

THIS CALL TROPERTIES OF THE HOOREONTE			
Specific gravity	2.50		
Water absorption	1.5%		
Fineness modules	2.0		
Type of sand	River sand		
Zone	III		

Locally available sand used as fine aggregate for experimental work and passing through 4.75mm as per IS 383-

1978.Sand is brought from penna river bed in nellore. The preliminary tests like specific gravity, water absorption, and fineness modules are tested and results are tabulated below.

3) Coarse aggregate

Locally available 20 mm down size coarse aggregate with retained on 4.75mm sieve has been used in the present work. Different test have been conducted on coarse aggregates are specific gravity, water absorption fineness modules. The properties of coarse aggregate as follows.

TABLE III PROPERTIES OF COARSE AGGREGATE 2.82Specific gravity

Water absorption	11%
Shape of aggregate	Angular
Fineness modules	4.0

4) Water

Potable water which is available in laboratory is used for casting of specimen and as well as curing of specimen as per IS 456-2000.

5) Steel fibers

Steel fibers are short, discrete lengths of steel with different aspect ratio from about 30 to 150 with different cross sections. Different types of Steel fibers are hooked ends, crimped, glue hooked end etc. these are most commonly used fibers. Their shape will be Round of diameter 0.25 to 0.75mm. They Enhances flexural, impact and fatigue strength of concrete. Thin shells and plates have also been constructed using steel fibers. In the present work crimped steel fiber with flat end used. These steel fibers are brought from Bharat Steel Chennai Pvt. Ltd. (BSC). The properties off steel fibers with their specifications are mentioned in the table below.

TABLE IV					
PROPERTIES OF STEEL FIBERS					

PROPERTIES OF STEEL FIBERS				
Type of steel fiber	Crimped			
Material	Low carbon drawn flat wire			
Length of fiber	25 mm			
Diameter of fiber	05 mm			
Aspect ratio	50			
Tensile strength	500-750mpa			
appearance	Clear, bright, flat end crimped steel fiber			
Applications	Tunnel shot create, industrial flooring road and			
	pavement			

6) Polypropylene fibers

Polypropylene fiber is composed of crystalline and noncrystalline (amorphous) regions. The fiber range in size from fractions of a micrometer to centimeters in diameter. The manufacturing of this fiber have to two different types. First one is pulling wire procedure with circular cross section or by extruding the plastic film with rectangular cross section. And appearance of this fiber in fibrillated bundles, mono filament. These fibers have different length 12mm, 24mm; 40mm cut length is available. In the present investigation the polypropylene fibers with 12mm cut length is used. These polypropylene fibers are brought from Bharat Steel Chennai Pvt. Ltd. (BSC). The properties off polypropylene fibers with their specifications are mentioned in the table below.

TABLE V			
PROPERTIES OF POLYPROPYLENE FIBERS			
Geometry of fiber Fibrillated			
Length of fiber	12 mm		
Tensile strength	500 -750 nm		

• Percentage variation of fibers in mix:

The proportions of fibers used in concrete mix are at percentage of 0.5%, 1%, 1.5% and for each proportion equal quantity (50% of each) of fibers are added in the mix.

TABLE VI PERCENTAGE VARIATION OF FIRERS IN MIX

Percentage of fiber added in overall concrete mix (%)	volume of	Polypropylene fibers by Weight of cement (%)
0	concrete (%)	0
0.5	0.25	0.25
1.5	0.75	0.75

Concrete mix design for M25 concrete (IS 10262:2009)

Stipulation for mix proportioning

STIPULATION FOR MIX PROPORTIONING				
S. No.	Content	Mix Proportion		
1	Grade destination	M25		
2	Type of cement	OPC 53 grade		
3	Maximum nominal size of aggregate	20mm		
4	Minimum cement content	300 kg/m ³		
5	workability	75mm		
6	Exposure condition	Severe		
7	Method of concrete placing	normal		
8	Degree of supervision	good		
9	Type of aggregate	Crushed angular aggregate		
10	Maximum cement content	450 kg/m ³		

TABLE VII

VI. EXPERIMENTAL METHODOLOGY

To study the strength parameters of concrete it's necessary to conduct the certain tests on concrete. Concrete can be tested in fresh state as well as in hardened state with different mix proportion of fibers.

A. Hardened Concrete

- Compressive strength 1)
- 2) Split tensile strength
- 3) Flexural strength
- 4) Impact test

1) Compressive strength test

In the present work Compressive strength test can be carried

out by using cube size of 150mm×150mm×150mm cubes are casted for M25 grade concrete with different type of hybrid fibers present in concrete. The cubes are then de- moulded after 24 hours of casting and then cubes are kept in curing tank for 28 days. After 28 days of curing period cubes shells are removed from water and keep out for drying. After that cubes areto be tested in compression testing machine with machine having capacity of 2000KN and failure load of cubes can be noteed using appropriate formula compressive strength can be determined. For accurate valves 3 cubes shall be casted and tested and compressive strength can be calculated by following formula:

 $compressive strength = \frac{failure load}{cross sectional area}$

2) Split tensile strength

For tensile strength test cylinders specimens can be casted with dimension of 150mm diameter and 300mm length casted for M25 grade concrete with different type of hybrid fibers present in concrete. The cylinders are then demoulded after 24 hours of casting and then they are placed in curing tank for 28 days. After 28 days of curing period cylinders shall be removed from water and keep out for drying after that cylinders are to be tested in compressive testing machine and taking of 3 average valve and tensile strength can be calculated using formula:

Tensile strength(N/MM2) =
$$\frac{2P}{\Pi dl}$$

Where,
P = failure load,
D = diameter of cylinder,

L = length of cylinder

h = height of cylinder.

3) Flexural strength

For flexure strength test prisms should be casted with having an dimension of 100mm×100mm×500mm prisms are casted for M25 grade concrete with different type of hybrid fibers present in concrete. The prisms are then demoulded after 24 hours of casting and then prisms are kept in curing tank for 28 days. After 28 days curing period prisms shell be remove from water and keep it for drying. After that prisms should be tested in universal testing machine (UTM) having capacity of 1000KN failure load can be note down and flexural strength can be calculated by following formula:

Pl Flexural strength=bd^2

Where, p= failure load, l= length of specimen, d= depth of specimens, b= breadth of specimens.

4) Impact test

This test is carried on cylindrical specimen ¹/₄ height of cylinder (75mm) and having diameter 150mm.and cast specimen is cured for 28days and tested in impact testing equipment. Weight of hammer is 4.54 kg, height of the drop is 450mm and number of blows should be note down and graph should be plotted between number of blows and % of fibers.

B. Results

1) Compressive strength test results

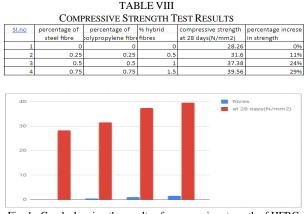


Fig. 1. Graph showing the results of compressive strength of HFRC

From the above Fig. 1, plainly at 0.5% expansion of filaments the compressive quality is 31.6 N/mm2. As the rate of strands is expanded to 1 % and to 1.5 % the compressive quality is 37.38 N/mm2, 39.56 N/mm2 separately. From this we can presume that as there is an augmentation in the fiber content there is additionally an addition in the compressive quality. In this way compressive quality increments with the expansion of expansion of filaments in the blend. At the point when contrasted and controlled cement the expansion in the compressive quality with fiber expansion in rates of 0.5%, 1%, 1.5% is 11%, 24%, 29% individually.

2) Tensile strength test results

TABLE IX
TEST RESULTS OF TENSILE STRENGTH

<u>Sl.no</u>	percentage of	percentage of	% hybrid	split tensile strength	percentage increse
	steel fibre	polypropylene fibre	fibres	at 28 days(N/mm2)	in strength
1	0	0	0	2.62	0%
2	0.25	0.25	0.5	2.8	6%
3	0.5	0.5	1	3.28	20.12%
4	0.75	0.75	1.5	3.92	33%

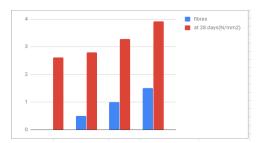


Fig. 2. Graph showing the results of split tensile strength of HFRC

From the above Fig. 2, plainly at 0.5% expansion of filaments the elasticity is 2.46 N/mm2 and at 0.5% expansion of strands there is declarations in quality contrast with traditional cement i.e. 2.62N/mm2. As the rate of strands is expanded to 1% and to 1.5% the split rigidity is 3.28 N/mm2, 3.92 N/mm2 individually. From this we can infer that for 0.5% expansion of filaments there is lessening in results from there on expansion of strands i.e. 1%,1.5% there may increment in quality When contrasted and controlled cement the increment in the split elasticity with fiber expansion in rates of 0.5%, 1%, 1.5% is 6%, 20.12%,33% individually.

3) Flexural strength test results

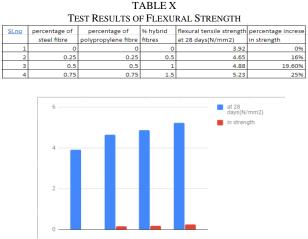


Fig. 3. Graph showing the results of flexural strength of HFRC

From the above Fig. 3, plainly at 0.5% expansion of strands the flexural quality is 4.88 N/mm². As the rate of filaments is expanded to 1 % and to 1.5 % the flexural quality is 4.88N/mm², 5.23 N/mm² separately. From this we can presume that as there is an addition in the fiber content there is likewise an augmentation in the flexural quality. Hence, flexural quality increments with the expansion of expansion of filaments in the blend. At the point when contrasted and controlled cement the expansion in the flexural quality with fiber expansion in rates of 0.5%, 1%, 1.5% is 16%, 19.6%, 33.33% individually.

4) Impact strength test results

TABLE X

	TEST RESULTS OF IMPACT TEST						
<u>Sl.no</u>	no percentage of percentage of % hybrid impact strength at first		impact strength at				
	steel fibre	polypropylene fibre	fibres	crack at 28 days(N/mm2)	failure no.of blows 28		
1	0	0	0	11	35		
2	0.25	0.25	0.5	13	56		
3	0.5	0.5	1	20	91		
4	0.75	0.75	1.5	26	128		

From the Fig, 4, obviously at as the rate of strands expands the no of blows required to disappointment the example additionally increments. From this we can infer that as there is an augmentation in the fiber content there is likewise an addition in the effect valve or quality. In this manner sway quality increments with the expansion of expansion of filaments in the blend. At the point when contrasted and controlled cement the expansion in the effect quality with fiber expansion in rates of 0.5%, 1%, 1.5% separately.

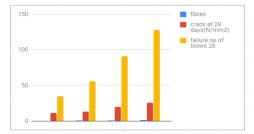


Fig. 4. Graph showing the results of impact strength of HFRC

VII. CONCLUSION

From my experimental examination, I finished up the accompanying focuses.

- There is change in Compressive quality of HFRC contrast with traditional cement on account of expansion of strands. The greatest increment in compressive quality saw at having mixture proportion 1.5 % i.e. 0.75 % steel fiber and 0.75 % polypropylene fiber and When contrasted and controlled cement the expansion in the compressive quality with fiber expansion in rates of 0.5%, 1%, 1.5% is 11%, 24%, 29% separately.
- Tensile quality might be abatement for the proportion 0.5 % of filaments contrast with ordinary cement, from that point it might increment in rigidity and half and half proportion having 1.5% gives greatest quality contrast with other extent. From this we can infer that for 0.5% expansion of strands there is decline in results from that point expansion of filaments i.e. 1%, 1.5% there may increment in quality when contrasted and controlled cement the expansion in the split elasticity with fiber expansion in rates of 0.5%, 1%, 1.5% is 16%, 19.6%, 25% separately.
- Flexural quality might be most extreme for mixture proportion 1.5% thinks about to customary cement. From this we can reason that as there is an augmentation in the fiber content there is likewise an addition in the flexural quality. In this way flexural quality increments with the expansion of expansion of strands in the blend. At the point when contrasted and controlled cement the expansion in the flexural quality with fiber expansion in rates of 0.5%, 1%, 1.5% is 6%, 20.12%, 33% separately.
- Impact quality of HFRC increments as the rate of strands expands the no of blows required to disappointment the example additionally increments. Along these lines sway quality increments with the expansion of expansion of filaments in the blend. At

the point when contrasted and controlled cement the expansion in the effect quality with fiber expansion in rates of 0.5%, 1%, 1.5% separately.

- Slump cone valves are diminishing with Addition of filaments is expansions. It is so in light of the fact that as the strands are included the draining will be decreased and the blend will get to be unforgiving. From this we can reason that as the rate of fiber substance is expanded the workability will be diminished. As the rate increment in filaments the compaction variable qualities diminishes. From this we can infer that the workability of the blend diminishes as the fiber content in the solid increments.
- The ideal rate of filaments expansion is 1.5%. Expansion of strands up to 1.5% gives best results in all quality parameters contrast with other blend extent.

REFERENCES

[1] Selina ruby g., geethanjali c., jaison varghese, p. Muthu priya"Influence of Hybrid Fiber on Reinforced Concrete," in International Journal of Advanced Structures and Geotechnical Engineering, Vol. 03, No. 01, January 2014.

- [2] S. C. Patodi, C.V. Kulkarni "Performance Evaluation Of Hybrid Fiber Reinforced Concrete Matrix," in International Journal of Engineering Research and Applications Vol. 2, Issue5, September- October 2012, pp.1856-1863.
- [3] Wakchaure M. R., Rajebhosale S. H., Satpute M. B., Kandekar S. B, "Comparison of compressive strength and flexural shear strength for hybrid fiber reinforced concrete with controlled concrete" International Journal of Engineering and Technical Research, Volume-02, Issue-09, September 2014.
- [4] A SivakumaR et.al, "Influence of hybrid fiber on the post crack performance of high strength concrete: part 1 experimental investigations" in Journal of Civil Engineering and Construction Technology Vol. 2(7), pp. 147-159, July 2011.
- [5] Chandra mouli K.et al, "Strength Properties of Glass Fibre Concrete," ARPN Journal of Engineering and Applied Sciences, Vol. 5, No. 4, April 2010.
- [6] Mohammed Alias Yusof et al "Mechanical Properties of Hybrid Steel Fibre Reinforced Concrete with Different Aspect Ratio," in Australian Journal of Basic and Applied Sciences, 5(7): 159-166, 2011.
- [7] C. Selin Ravikumar et al investigated on "Glass Fibre Concrete: Investigation on Strength and Fire Resistant Properties," IOSR Journal of Mechanical and Civil Engineering, 9, Issue 3 (Sep. - Oct. 2013).