
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5792

800

Abstract—Software-defined networks decouple the control

plane from the data plane, enabling researchers to evaluate

protocols and network configurations through the centralized

point of control, the controller. They provide easy management

and automation, scalability, and flexibility in the traditional

computer network. In spite of these advantages, software-defined

networks fall prey to various denial-of-service attacks specific to

network protocols and applications despite their simplicity. There

is a need to implement intelligence in the controller as a

countermeasure for not only the various types of denial-of-service

attacks but also the increasing sophistication involved in them. In

this paper, an intelligent threat-aware response system is proposed

for defending against any attack by using reinforcement learning.

Reinforcement learning can acquire intelligence for detection and

reactive actions through experience with various attacks. This

experience is obtained from interactions with the computer

network through the controller. With the combination of

reinforcement learning and the software-defined networking

controller, the goal of the autonomous threat response system can

be achieved.

Index Terms— Intelligent Threat Response

I. INTRODUCTION

Software-defined networking (SDN) provides an abstraction

of programmability in traditional computer networks.

Computer networks can be simulated virtually and interfaced

through the SDN controller from topology configurations to

protocol-specific behavior. This abstraction is facilitated by

OpenFlow [1], a protocol which decouples the data plane from

the control plane on the switch. OpenFlow protocol also makes

the computer network more flexible. In addition, since the

control plane is separated from the data plane, it is possible for

researchers to deploy and test various protocols in real-time.

However, along with all the advancements in the field of

computer networks, there have been advances for

compromising the networks as well. Protocol features such as

three-way handshake in TCP, HTTP GET request processing,

and ICMP response can be exploited for selfish gains. The same

features which provide a secure connection for communication,

availability, and hassle-free data transfer lead to the misuse. A

few examples of such misuse are TCP SYN flood attack, HTTP

GET Request flood attack, and Ping flood attack. Recent history

of network attacks [2, 3] brings to light the innovative

approaches taken by adversaries in terms of denial-of-service

(DoS) attacks. This calls for a measure which can surpass the

same innovation and counter the attacks. The other concept

which enters the picture is one of reinforcement learning [4]. It

is a paradigm which closely imitates the human way of learning.

The human brain learns with the help of interaction with and

feedback from a corresponding environment. Given a state of

the environment, the human brain evaluates the best possible

action to interact with it and gain the best possible outcome. The

definition of the word ‘‘best’’ is highly subjective. However,

the same learning procedure helps 1 us understand concepts

from natural language [5] to aeronautics [6]. This paper

presents an approach in which a reinforcement learning

paradigm is combined with SDN to create an intelligent threat-

aware framework which is able to take responsive actions,

given access to network behavior information.

II. SYSTEM ARCHITECTURE

 system architecture for the intelligent threat-aware

response system in software-defined networks. It gives an

explanation of the different components of the framework in a

unique combination of northbound and southbound interfaces

for knowledge discovery and data mining (KDD) process,

reinforcement learning, and the reactive actions. The three main

components are as follows:

 Traffic Analyzer: A southbound interface for

monitoring the network traffic propagating through

each of the switches connected in the network. The

same implementation facilitates the initial steps of the

KDD process.

 Reinforcement Learning Agent: An additional

component developed in the SDN controller operating

system for the implementation of the Q-learning

algorithm.

 Threat Response: Another south bound interface

which provides APIs to communicate with OpenFlow

and ovsdb to manage the bandwidth of the switches

and also to update flow tables on the switch.

Fig. 1. Intelligent threat-aware response system

A. Traffic Analyzer

A threat-aware system needs to continuously monitor the

Intelligent Threat Response

N. Saurabh Kumar1, Sukumar Varma2

1,2Student, Department of Electronics and Communications, SRMIST, Chennai, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5792

801

network to detect any unusual behavior. The traffic analyzer is

the module responsible for the network monitoring in the

proposed framework. It collects information about the total

number of packets sent and received along with the total

number of bytes sent and received through the network.

However, the total number of packets and bytes alone do not

provide much of an insight to discriminate between various

types of network threats. To achieve that, traffic analyzer

module collects information specific to different protocols such

as TCP, UDP, HTTP, etc. The traffic analyzer module is a

southbound interface in the SDN controller operating system

that monitors network traffic. The OpenFlow protocol APIs

allow the controller to check for flow-specific and port-specific

statistics. This framework is implemented as a part of the RYU

[15] SDN controller. RYU is an event-driven controller wherein

the southbound APIs are invoked whenever there is an

appropriate event. For example, one could set up an event

listener for an OpenFlow packet and define an API to be

invoked whenever there is an incoming OpenFlow packet. In a

similar way, there are listeners for port-specific statistics on the

switch. The traffic 10 analyzer sends a stats request to the

switch, in Hence, network latency is also one of the features

included during the data selection phase.

1) Data Selection

Just as the name suggests, the data selection process involves

the determination of the respective data type and source. As

discussed earlier, the selected statistics comprise the total

number of packets, the total bytes of data being transferred, and

protocol-specific information with respect to the overall values.

For example, let us suppose that 10% of the bandwidth capacity

is under use in the network. The first set of features would

determine how much of that 10% is occupied by the respective

switches present in the network and then calculate what percent

of the overall usage belongs to a specific protocol. The features

are computed with the help of the network congestion function

and traffic classification while transforming the data into an

appropriate representation for the reinforcement learning agent.

DoS attacks mainly focus on exhausting the bandwidth of the

network or the resources of the switch and/or a host. The

information about the total number of packets and the total size

allows one to estimate the bandwidth usage to some extent.

Resource exhaustion is achieved by sending spoofed or fake

requests to the victim; therefore, protocol-specific statistics are

selected to address these type of attacks. Also, if a network is

under attack, the network latency would be relatively high. 11

Hence, network latency is also one of the features included

during the data selection phase.

2) Data Preprocessing

The data that exist in the natural state or exist in the world

are not necessarily in the best possible format. First of all, it is

not necessary for the data to have all the uniform values as an

ideal data set. For this research, an ideal data set is one where

there are no missing or invalid values for any considered

parameter. The challenge to solve in this phase is generating the

features in a synchronized manner. It is important to measure

the number of packets, the total number of bytes exchanged,

and the network latency at the same time in order to represent

the network state for that time. Even a slight shift in the

measurement would lead to confusion in the network state. For

example, if the number of packets and the number of bytes are

recorded at different times, one could end up with many more

bytes for a relatively small number of packets and vice versa.

Such a discrepancy in the statistics would mislead the

reinforcement learning agent and cause errors while it selects a

reactive action. During the data preprocessing step, the data are

filtered to form the features that will be used later for further

computation.

3) Data Transformation

The information obtained so far lacks context. The context

information allows the framework to understand the need for

taking a reactive action. That is, the context information helps

to derive some conclusion from the data. With respect to the

framework, the context information summarizes the overall

behavior of the network at a given point in time. The aim of this

phase is to provide concrete evidence that the network is

congested or is under an attack. This evidence contributes

towards the intelligence of the proposed framework. The

intelligence is 12 not only in taking the right action given a

threat, but also on the right understanding of the network

behavior. For example, if the framework scales up the

bandwidth at a time when the network does not need more

bandwidth to function, it defeats the purpose of an intelligent

system. The context information is provided with the help of

network congestion function and traffic classification. Network

congestion function is one of the contributions of this research

to identify the network behavior given limited information.

Traffic classification is an extension to the network congestion

function for obtaining protocol-specific congestion across the

network.

4) Network Congestion Score

The very first requirement of a threat-aware response system

is to know if there is any threat to the computer network. A

network threat can be identified as an unusual behavior of the

network, whether it is through the traffic or by the switches.

This unusual behavior needs to be captured through some

measure to determine if there is an active threat to the computer

network. The network congestion function carries that purpose

in the framework. This function returns a congestion score

which helps the reinforcement learning agent distinguish

between the normal and abnormal network behavior. That is,

the congestion score becomes the ‘‘observation’’ and input to

the reinforcement learning algorithm. Hence, congestion score

allows the intelligence module to take reactive action in case of

a threat and scale up the network resources when needed. The

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5792

802

network congestion score is defined as a function of throughput

and network latency. The throughput of the network indicates

the number of bytes or the rate of bytes being exchanged

through the network per unit time. The network latency on the

other hand indicates the round trip-time (RTT) that a packet

would take for traveling across all the nodes of the network and

returning to the origin. 13 That is, the packet will originate from

the switch and hop onto each of the hosts present in the network

and back to the switch. The following equation can be used to

calculate network congestion score: Congestion Score = {︂ △𝐵

𝐵 * 100}︂ + {︂ 1 𝑘 * 𝑛 * △𝐿 𝐿 }︂ (1) △𝐵 is the difference

between the current speed of the port and the default speed of

the port B, the current speed is the byte rate with which the port

is transmitting data, and the default speed is the maximum

speed with which the port can transmit data. The value of n

indicates the total number of links in the local network and △𝐿

is the difference between the network latency and the ideal

latency 𝐿 of the local network. The total number of links helps

to determine the ideal network latency.

B. Reinforcement Learning Agent

This section explains the reinforcement learning paradigm as

applied to network security. This module is developed as a part

of the RYU [15] SDN controller operating system. Formally

speaking, a reinforcement learning problem consists of the

following sub-elements:

 Policy

 Reward Signal

 Value function

The reinforcement learning problem is the selection of the

right reactive action given the current network behavior. Let us

go over each of the sub-elements of reinforcement learning.

This approach not only provides an overview of reinforcement

learning but also provides context information that facilitates

the relationship between the concept of reinforcement learning

and its practical implementation for network security.

C. Threat Response

The threat response module interacts with the ovsdb and

OpenFlow southbound APIs of the SDN controller to deploy

network configurations from the framework. The

configurations are selected with the help of reinforcement

learning and are deployed in real-time. As shown in Figure 1,

the threat response consists of two sub-modules: bandwidth

manager and flow rule update manager. Both of these sub-

modules represent the actions which the reinforcement learning

agent can take against a network threat. This module can be

easily extended with more choices for actions against the

network threat.

1) Bandwidth Manager

The bandwidth manager can be thought of as an interface

which provides a southbound API to modify the bandwidth of

the switch. The value of the bandwidth is determined by another

reinforcement learning agent, making it possible for the system

to scale the bandwidth up and down as needed. The state space

and action 22 space for this agent are not so different from the

agent that determines whether to update bandwidth or update a

flow rule.

2) Flow Rule Manager

The flow rule manager is another interface which provides a

southbound API to update flow rules on the switch. This API

sends an OpenFlow message to the particular switch to indicate

the update in the flow table. With the help of this API, 23 the

framework can add, modify, and remove rules corresponding to

various packets. There are many cases wherein just updating the

bandwidth of the network does not solve the problem. For

example, in the case of HTTP GET Request Flood, it is not the

bandwidth which is exhausted in the network but the resources

of the victim server. The action could be to limit or stop the

incoming HTTP traffic to a particular switch or host in the

network.

III. RESULTS AND DISCUSSION

Apart from the iterative training of the reinforcement

learning agent on various types of DoS attacks, the other aspect

of evaluation is how quickly the reinforcement learning agent

learns to select the optimal or the right action as per the standard

strategy. For example, the standard strategy for a UDP flood

might be increasing the bandwidth, but for a UDP flood with a

higher intensity, it would be to moderate UDP traffic using a

flow rule. Each attack is repeated ten times to get an estimate of

the learning curve for the reinforcement learning agent. There

is a lot of variance in the number of interactions made, and the

reinforcement learning agent does not take too many

interactions as well. The main reason for it is the number of

actions in the framework; at present, the framework supports

two major actions. The first one is bandwidth management in

the computer network and the other one is flow rule

management. There are different flow rules under the flow rule

management action, and each of these flow rules are selected

by looking at the protocol-specific 43 features obtained during

traffic classification. It is possible that, with the increase in the

number of actions, the reinforcement learning agent takes more

interactions to arrive at the correct action for the particular

scenario. The learning curve of the agent w.r.t. various network

attacks. The last test which was carried out on the framework

was one of bandwidth allocation. It is possible that at some

point in time, the computer network is busier than usual. Maybe

all the users were streaming live videos or playing games. This

framework was developed with a major focus on handling

different types of network attacks, but it also has an additional

feature of bandwidth management. It can be configured to act

like a resource allocation agent as well. Table 1 shows the

various values of the bandwidth suggested by the reinforcement

learning agent under different network congestion scenarios.

Table01 – Evaluating Optimal Bandwidth Allocation Case

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5792

803

Network Congestion (%) Suggested Bandwidth(Mbps) 1 99.98

92-96 2 85.47 79-83 3 50.32 41-43 4 10.39 4-7 It is clear from

all the results that were obtained, that the framework works

reasonably well against various DoS attacks. However, there

were challenges faced during the process to obtain such results.

These challenges include simulation techniques for the various

attacks to the deployment of the framework and the learning of

the reinforcement learning agent. Overall, the agent counters

the network attacks to a greater extent. Hence, it gives sufficient

background on further implementation of an intelligent network

security module with SDN.

TABLE I

EVALUATING OPTIMAL BANDWIDTH ALLOCATION

IV. CONCLUSION

This paper presented the overview of intelligent threat

response.

ACKNOWLEDGEMENT

We would like to thank Mr. Pradeep Doss for his continuous

guidance and support throughout my time as an under graduate

student. I am greatly indebted to Mr. Pradeep Doss for all the

technical concepts and research styles that I learned from her.

Another person who had an impact on my work is Mr.

Manikandan. I would like to thank him for his valuable insights

and comments on the algorithmic approach for this work.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, and J. Turner, ‘‘Openflow: Enabling innovation in

campus networks,’’ SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,

pp. 69--74, Mar. 2008.

[2] L. H. Newman, “What we know about friday’s massive east coast internet

outage,’’ Oct 2016.

[3] D. Bisson, ‘‘The 5 most significant ddos attacks of 2016,’’ Nov 2016.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

Cambridge, MA: MIT press, 1998, vol. 1, no. 1.

[5] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young, ‘‘A survey of

statistical user simulation techniques for reinforcement-learning of

dialogue management strategies,’’ Knowl. Eng. Rev., vol. 21, no. 2, pp.

97--126, Jun. 2006.

