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Abstract—Software-defined networks decouple the control 

plane from the data plane, enabling researchers to evaluate 

protocols and network configurations through the centralized 

point of control, the controller. They provide easy management 

and automation, scalability, and flexibility in the traditional 

computer network. In spite of these advantages, software-defined 

networks fall prey to various denial-of-service attacks specific to 

network protocols and applications despite their simplicity. There 

is a need to implement intelligence in the controller as a 

countermeasure for not only the various types of denial-of-service 

attacks but also the increasing sophistication involved in them. In 

this paper, an intelligent threat-aware response system is proposed 

for defending against any attack by using reinforcement learning. 

Reinforcement learning can acquire intelligence for detection and 

reactive actions through experience with various attacks. This 

experience is obtained from interactions with the computer 

network through the controller. With the combination of 

reinforcement learning and the software-defined networking 

controller, the goal of the autonomous threat response system can 

be achieved. 

 
Index Terms— Intelligent Threat Response 

I. INTRODUCTION 

Software-defined networking (SDN) provides an abstraction 

of programmability in traditional computer networks. 

Computer networks can be simulated virtually and interfaced 

through the SDN controller from topology configurations to 

protocol-specific behavior. This abstraction is facilitated by 

OpenFlow [1], a protocol which decouples the data plane from 

the control plane on the switch. OpenFlow protocol also makes 

the computer network more flexible. In addition, since the 

control plane is separated from the data plane, it is possible for 

researchers to deploy and test various protocols in real-time. 

However, along with all the advancements in the field of 

computer networks, there have been advances for 

compromising the networks as well. Protocol features such as 

three-way handshake in TCP, HTTP GET request processing, 

and ICMP response can be exploited for selfish gains. The same 

features which provide a secure connection for communication, 

availability, and hassle-free data transfer lead to the misuse. A 

few examples of such misuse are TCP SYN flood attack, HTTP 

GET Request flood attack, and Ping flood attack. Recent history 

of network attacks [2, 3] brings to light the innovative 

approaches taken by adversaries in terms of denial-of-service 

(DoS) attacks. This calls for a measure which can surpass the 

same innovation and counter the attacks. The other concept 

which enters the picture is one of reinforcement learning [4]. It  

 

is a paradigm which closely imitates the human way of learning. 

The human brain learns with the help of interaction with and 

feedback from a corresponding environment. Given a state of 

the environment, the human brain evaluates the best possible 

action to interact with it and gain the best possible outcome. The 

definition of the word ‘‘best’’ is highly subjective. However, 

the same learning procedure helps 1 us understand concepts 

from natural language [5] to aeronautics [6]. This paper 

presents an approach in which a reinforcement learning 

paradigm is combined with SDN to create an intelligent threat-

aware framework which is able to take responsive actions, 

given access to network behavior information. 

II. SYSTEM ARCHITECTURE  

 system architecture for the intelligent threat-aware 

response system in software-defined networks. It gives an 

explanation of the different components of the framework in a 

unique combination of northbound and southbound interfaces 

for knowledge discovery and data mining (KDD) process, 

reinforcement learning, and the reactive actions. The three main 

components are as follows: 

 Traffic Analyzer: A southbound interface for 

monitoring the network traffic propagating through 

each of the switches connected in the network. The 

same implementation facilitates the initial steps of the 

KDD process. 

 Reinforcement Learning Agent: An additional 

component developed in the SDN controller operating 

system for the implementation of the Q-learning 

algorithm.  

 Threat Response: Another south bound interface 

which provides APIs to communicate with OpenFlow 

and ovsdb to manage the bandwidth of the switches 

and also to update flow tables on the switch.  

 

 
Fig. 1.  Intelligent threat-aware response system 

A. Traffic Analyzer  

A threat-aware system needs to continuously monitor the 
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network to detect any unusual behavior. The traffic analyzer is 

the module responsible for the network monitoring in the 

proposed framework. It collects information about the total 

number of packets sent and received along with the total 

number of bytes sent and received through the network. 

However, the total number of packets and bytes alone do not 

provide much of an insight to discriminate between various 

types of network threats. To achieve that, traffic analyzer 

module collects information specific to different protocols such 

as TCP, UDP, HTTP, etc. The traffic analyzer module is a 

southbound interface in the SDN controller operating system 

that monitors network traffic. The OpenFlow protocol APIs 

allow the controller to check for flow-specific and port-specific 

statistics. This framework is implemented as a part of the RYU 

[15] SDN controller. RYU is an event-driven controller wherein 

the southbound APIs are invoked whenever there is an 

appropriate event. For example, one could set up an event 

listener for an OpenFlow packet and define an API to be 

invoked whenever there is an incoming OpenFlow packet. In a 

similar way, there are listeners for port-specific statistics on the 

switch. The traffic 10 analyzer sends a stats request to the 

switch, in Hence, network latency is also one of the features 

included during the data selection phase.  

 

1) Data Selection  

Just as the name suggests, the data selection process involves 

the determination of the respective data type and source. As 

discussed earlier, the selected statistics comprise the total 

number of packets, the total bytes of data being transferred, and 

protocol-specific information with respect to the overall values. 

For example, let us suppose that 10% of the bandwidth capacity 

is under use in the network. The first set of features would 

determine how much of that 10% is occupied by the respective 

switches present in the network and then calculate what percent 

of the overall usage belongs to a specific protocol. The features 

are computed with the help of the network congestion function 

and traffic classification while transforming the data into an 

appropriate representation for the reinforcement learning agent. 

DoS attacks mainly focus on exhausting the bandwidth of the 

network or the resources of the switch and/or a host. The 

information about the total number of packets and the total size 

allows one to estimate the bandwidth usage to some extent. 

Resource exhaustion is achieved by sending spoofed or fake 

requests to the victim; therefore, protocol-specific statistics are 

selected to address these type of attacks. Also, if a network is 

under attack, the network latency would be relatively high. 11 

Hence, network latency is also one of the features included 

during the data selection phase. 

 

2) Data Preprocessing  

The data that exist in the natural state or exist in the world 

are not necessarily in the best possible format. First of all, it is 

not necessary for the data to have all the uniform values as an 

ideal data set. For this research, an ideal data set is one where 

there are no missing or invalid values for any considered 

parameter. The challenge to solve in this phase is generating the 

features in a synchronized manner. It is important to measure 

the number of packets, the total number of bytes exchanged, 

and the network latency at the same time in order to represent 

the network state for that time. Even a slight shift in the 

measurement would lead to confusion in the network state. For 

example, if the number of packets and the number of bytes are 

recorded at different times, one could end up with many more 

bytes for a relatively small number of packets and vice versa. 

Such a discrepancy in the statistics would mislead the 

reinforcement learning agent and cause errors while it selects a 

reactive action. During the data preprocessing step, the data are 

filtered to form the features that will be used later for further 

computation.  

 

3) Data Transformation  

The information obtained so far lacks context. The context 

information allows the framework to understand the need for 

taking a reactive action. That is, the context information helps 

to derive some conclusion from the data. With respect to the 

framework, the context information summarizes the overall 

behavior of the network at a given point in time. The aim of this 

phase is to provide concrete evidence that the network is 

congested or is under an attack. This evidence contributes 

towards the intelligence of the proposed framework. The 

intelligence is 12 not only in taking the right action given a 

threat, but also on the right understanding of the network 

behavior. For example, if the framework scales up the 

bandwidth at a time when the network does not need more 

bandwidth to function, it defeats the purpose of an intelligent 

system. The context information is provided with the help of 

network congestion function and traffic classification. Network 

congestion function is one of the contributions of this research 

to identify the network behavior given limited information. 

Traffic classification is an extension to the network congestion 

function for obtaining protocol-specific congestion across the 

network.  

 

4) Network Congestion Score  

The very first requirement of a threat-aware response system 

is to know if there is any threat to the computer network. A 

network threat can be identified as an unusual behavior of the 

network, whether it is through the traffic or by the switches. 

This unusual behavior needs to be captured through some 

measure to determine if there is an active threat to the computer 

network. The network congestion function carries that purpose 

in the framework. This function returns a congestion score 

which helps the reinforcement learning agent distinguish 

between the normal and abnormal network behavior. That is, 

the congestion score becomes the ‘‘observation’’ and input to 

the reinforcement learning algorithm. Hence, congestion score 

allows the intelligence module to take reactive action in case of 

a threat and scale up the network resources when needed. The 
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network congestion score is defined as a function of throughput 

and network latency. The throughput of the network indicates 

the number of bytes or the rate of bytes being exchanged 

through the network per unit time. The network latency on the 

other hand indicates the round trip-time (RTT) that a packet 

would take for traveling across all the nodes of the network and 

returning to the origin. 13 That is, the packet will originate from 

the switch and hop onto each of the hosts present in the network 

and back to the switch. The following equation can be used to 

calculate network congestion score: Congestion Score = {︂ △𝐵 

𝐵 * 100}︂ + {︂ 1 𝑘 * 𝑛 * △𝐿 𝐿 }︂ (1) △𝐵 is the difference 

between the current speed of the port and the default speed of 

the port B, the current speed is the byte rate with which the port 

is transmitting data, and the default speed is the maximum 

speed with which the port can transmit data. The value of n 

indicates the total number of links in the local network and △𝐿 

is the difference between the network latency and the ideal 

latency 𝐿 of the local network. The total number of links helps 

to determine the ideal network latency.  

B. Reinforcement Learning Agent  

This section explains the reinforcement learning paradigm as 

applied to network security. This module is developed as a part 

of the RYU [15] SDN controller operating system. Formally 

speaking, a reinforcement learning problem consists of the 

following sub-elements: 

 Policy  

 Reward Signal  

 Value function  

 

The reinforcement learning problem is the selection of the 

right reactive action given the current network behavior. Let us 

go over each of the sub-elements of reinforcement learning. 

This approach not only provides an overview of reinforcement 

learning but also provides context information that facilitates 

the relationship between the concept of reinforcement learning 

and its practical implementation for network security. 

C. Threat Response  

The threat response module interacts with the ovsdb and 

OpenFlow southbound APIs of the SDN controller to deploy 

network configurations from the framework. The 

configurations are selected with the help of reinforcement 

learning and are deployed in real-time. As shown in Figure 1, 

the threat response consists of two sub-modules: bandwidth 

manager and flow rule update manager. Both of these sub-

modules represent the actions which the reinforcement learning 

agent can take against a network threat. This module can be 

easily extended with more choices for actions against the 

network threat.  

 

1) Bandwidth Manager  

The bandwidth manager can be thought of as an interface 

which provides a southbound API to modify the bandwidth of 

the switch. The value of the bandwidth is determined by another 

reinforcement learning agent, making it possible for the system 

to scale the bandwidth up and down as needed. The state space 

and action 22 space for this agent are not so different from the 

agent that determines whether to update bandwidth or update a 

flow rule. 

 

2) Flow Rule Manager  

The flow rule manager is another interface which provides a 

southbound API to update flow rules on the switch. This API 

sends an OpenFlow message to the particular switch to indicate 

the update in the flow table. With the help of this API, 23 the 

framework can add, modify, and remove rules corresponding to 

various packets. There are many cases wherein just updating the 

bandwidth of the network does not solve the problem. For 

example, in the case of HTTP GET Request Flood, it is not the 

bandwidth which is exhausted in the network but the resources 

of the victim server. The action could be to limit or stop the 

incoming HTTP traffic to a particular switch or host in the 

network. 

III. RESULTS AND DISCUSSION 

Apart from the iterative training of the reinforcement 

learning agent on various types of DoS attacks, the other aspect 

of evaluation is how quickly the reinforcement learning agent 

learns to select the optimal or the right action as per the standard 

strategy. For example, the standard strategy for a UDP flood 

might be increasing the bandwidth, but for a UDP flood with a 

higher intensity, it would be to moderate UDP traffic using a 

flow rule. Each attack is repeated ten times to get an estimate of 

the learning curve for the reinforcement learning agent. There 

is a lot of variance in the number of interactions made, and the 

reinforcement learning agent does not take too many 

interactions as well. The main reason for it is the number of 

actions in the framework; at present, the framework supports 

two major actions. The first one is bandwidth management in 

the computer network and the other one is flow rule 

management. There are different flow rules under the flow rule 

management action, and each of these flow rules are selected 

by looking at the protocol-specific 43 features obtained during 

traffic classification. It is possible that, with the increase in the 

number of actions, the reinforcement learning agent takes more 

interactions to arrive at the correct action for the particular 

scenario. The learning curve of the agent w.r.t. various network 

attacks. The last test which was carried out on the framework 

was one of bandwidth allocation. It is possible that at some 

point in time, the computer network is busier than usual. Maybe 

all the users were streaming live videos or playing games. This 

framework was developed with a major focus on handling 

different types of network attacks, but it also has an additional 

feature of bandwidth management. It can be configured to act 

like a resource allocation agent as well. Table 1 shows the 

various values of the bandwidth suggested by the reinforcement 

learning agent under different network congestion scenarios.  

Table01 – Evaluating Optimal Bandwidth Allocation Case 
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Network Congestion (%) Suggested Bandwidth(Mbps) 1 99.98 

92-96 2 85.47 79-83 3 50.32 41-43 4 10.39 4-7 It is clear from 

all the results that were obtained, that the framework works 

reasonably well against various DoS attacks. However, there 

were challenges faced during the process to obtain such results. 

These challenges include simulation techniques for the various 

attacks to the deployment of the framework and the learning of 

the reinforcement learning agent. Overall, the agent counters 

the network attacks to a greater extent. Hence, it gives sufficient 

background on further implementation of an intelligent network 

security module with SDN. 
 

TABLE I 

EVALUATING OPTIMAL BANDWIDTH ALLOCATION 

 

IV. CONCLUSION 

This paper presented the overview of intelligent threat 

response. 
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