
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5792

636

Abstract—Internet Protocol version 4 (IPv4) addresses have

been reported to be nearing exhaustion and the next generation

Internet Protocol version 6 (IPv6) is gradually being deployed in

the Internet. IPv6 provides a much larger address space, better

address design and greater security, among other benefits. The

migration from IPv4 to IPv6 cannot be achieved in a short period

thus the two protocols will co-exist for some time. Unfortunately,

these two protocols are incompatible; hence for them to co-exist,

various IPv4-to-IPv6 transition mechanisms have been developed.

We analyzed the different site-to-site tunneling mechanisms

through a theoretical and experimental evaluation to study their

appropriateness in IPv6 deployment. We implemented NAPT-PT

concept in an existing IPv4-IPv6 translator. NAPT-PT allows a set

of V6 hosts to share a single V4 address thereby allowing more V6

nodes, than supported by NAT-PT, to establish communication

with V4 nodes.

Index Terms—Linux, IPv4, IPv6, IPV4/IPv6 transition, Dual

Stack, Tunneling, NAT-PT.

I. INTRODUCTION

An Internet Protocol address or IP address is a numerical

label tagged to devices that take part in a local or wide area

computer network that actively uses IP for communicating data

and information. An IP address is a 32-bit number and this

system is the Internet Protocol Version 4 or the IPv4 and most

networks still use this format today, no one expected that the

number of internet users will increase in this way so when IPv4

was designed it takes that the maximum numbers of devices that

will have IP is 2^32. That means an IP address can provide a

maximum (4,294,967,296) possible address, but in 1992 , the

Internet Engineering Task Force (IETF) realized that current IP

address space was running out as a result of rapid growth of

Internet size and applications, so the need for a new protocol

that has larger address space and improvement features was

needed, because of that a solution for this problem was solved

by IPv6 (internet protocol version 6) which offers a huge

address space which will be more than enough ,but

unfortunately IPv4 and IPv6 are incompatibles protocols and it

is impossible to migrate from IPv4 to IPv6 in one day. Many

transition mechanisms from IPv4 to IPv6 and vice versa had

been proposed, some researchers divided these methods

according to the techniques used in the transition to three

transition methods: Dual-Stack method , Tunneling method

and translation method as shown in Fig. 1 [5].

Fig. 1. IPV4/IPV6 Transition mechanisms

A. Dual Stack

It support both IPV6 and IPV4 on network device i.e. both

IPv4 and IPv6 protocol stacks are deployed on the same node.

As the word means, dual-stack mechanisms include two

protocol stacks that operate in parallel and allow network nodes

to communicate either via IPv4 or IPv6. They can be

implemented in both end system and network node. In end

systems, they enable both IPv4 and IPv6 applications to operate

at the same time. The Dual-stack capabilities of network nodes

support the transport of both IPv4 and IPv6 packets. In the dual-

stack mechanism, specified in IETF RFC2893, a network node

includes both IPv4 and IPv6 protocol stacks in parallel (Fig. 2).

IPv4 applications use the IPv4 stack, and IPv6 applications use

the IPv6 stack. Flow decisions are based on the version field of

IP header for receiving, and on the destination address type for

sending.

Fig. 2. Dual-stacks transition mechanism

The types of addresses are usually derived from DNS

lookups; the appropriate stack is selected in response to the

IPv4/IPv6 Address Translation Using Loadable

Kernel Module

Mandar Lokhande1, Siddhi Pathak2

1Professor, Department of Computer Science, MGM’s Jawaharlal Nehru Engg. College, Aurangabad, India
2Student, Department of Computer Science, MGM’s Jawaharlal Nehru Engg. College, Aurangabad, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5792

637

types of DNS records returned. Many off-the-shelf commercial

operating systems already have dual IP protocol stacks [6].

Hence, the dual-stack mechanism is the most extensively

employed transition solution. However, dual stack mechanisms

enable only similar network nodes to communicate with each

other (IPv6-IPv6 and IPv4-IPv4). Much more works are

required to create a complete solution that supports IPv6-IPv4

and IPv4-IPv6 communications.

B. Tunneling

Tunneling, from the perspective of transitioning, enables

incompatible networks to be bridged, and is usually applied in

a point-to-point or sequential manner. Three mechanisms of

tunneling are presented: IPv6 over IPv4 [9], IPv6 to IPv4

automatic tunneling, and Tunnel Broker.

1) IPV6 over IPv4 mechanism

The IPv6 over IPv4 mechanism embeds an IPv4 address in

an IPv6 address link layer identifier part, as shown in Fig. 3 and

defines Neighbor Discovery (ND) over IPv4 using

organization-local multicast. An IPv4 domain is a fully

interconnected set of IPv4 subnets, within the scope of a single

local multicast, in which at least two IPv6 nodes are present.

The IPv6 over IPv4 tunneling setup provides a solution for IPv6

nodes that are scattered throughout the base IPv4 domain

without direct IPv6 connectivity. The mechanism allows nodes,

on physical links, which are directly connected IPv6 routers to

become fully functional IPv6 nodes.

Fig. 3. IPV6 over IPV4 address link layer identifier

2) IPv6 to IPv4 automatic tunneling mechanism

Automatic tunneling refers to a tunnel configuration that

does not need direct management. An automatic IPv6 to IPv4

tunnel enables an isolated IPv6 domain to be connected over an

IPv4 network and then to a remote IPv6 networks. Such a tunnel

treats the IPv4 infrastructure as a virtual non-broadcast link, so

the IPv4 address embedded in the IPv6 address is used to find

the other end of the tunnel. The embedded IPv4 address can

easily be extracted and the whole IPv6 packet delivered over

the IPv4 network, encapsulated in an IPv4 packet. No

configured tunnels are required to send packets among 6to4

capable IPv6 sites anywhere in IPv4 Internet. Figure 4 shows

the structure of the 6to4 address format. The value of the prefix

field (FP) is 0x001, which the identifies global unicast address.

The Top-Level Aggregation identifier field (TLA) is assigned

by the IANA for the IPv6 to IPv4 mechanism. Hence, the IPv6

address prefix is 2002::/16 and the 32 bits after 2002::/16

represent the IPv4 address of the gateway machine of the

network in question. The packets thus know the way to any

other network. The 6to4 mechanism is the most widely

extensively used automatic tunneling technique. It includes a

mechanism for assigning an IPv6 address prefix to a network

node with a global IPv4 address.

Fig. 4. IPv6 to IPv4 address format

3) IPv6 tunnel broker

The IPv6 Tunnel Broker provides an automatic configuration

service for IPv6 over IPv4 tunnels to users connected to the

IPv4 Internet. IPv4 connectivity between the user and the

service provider is required. The service operates as follows

(Fig. 5).

1) The user contacts Tunnel Broker and performs the

registration procedure.

2) The user contacts Tunnel Broker again for

authentication and providing configuration

information (IP address, operating system, IPv6

support software, etc.).

3) Tunnel Broker configures the network side end-point,

the DNS server and the user terminal.

4) The tunnel is active and the user is connected to IPv6

networks.

Fig. 5. IPV6 tunnel broker

C. Translation

Fig. 6. BIS architecture

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5792

638

The basic function of translation in IPv4/IPv6 transition is to

translate IP packets. Several translation mechanisms are based

on the SIIT (Stateless IP/ICMP Translation algorithm)

algorithm. The SIIT algorithm is used as a basis of the BIS

(Bump in the Stack) and NAT-PT (Network Address

Translation-Protocol Translation) Mechanism [6].

1) Bump-In-the-stack mechanism

Bump-In-the-Stack (BIS) mechanism (RFC 2767) includes a

TCP/IPv4 protocol module and a translator module, which

consists of three bump components and is layered above an

IPv6 module (Fig. 6). Packets from IPv4 applications flow into

the TCP/IPv4 protocol module. The identified packets are

translated into IPv6 packets and then forwarded to the IPv6

protocol module. The three bump components are the extension

name resolver, which examines DNS lookups to determine

whether the peer node is IPv6-only; the address mapper, which

allocates a temporary IPv4 address to the IPv6 peer and caches

the address mapping; and the translator, which translates

packets between IPv4 and IPv6 protocol [6].

2) Network address translation-protocol translation

The NAT-PT mechanism is a stateful IPv4/IPv6 translator.

NAT-PT nodes are at the boundary between IPv6 and IPv4

networks. Each node maintains a pool of globally routable IPv4

addresses, which are dynamically assigned to IPv6 nodes when

sessions are initiated across the IPv6/IPv4 boundary. This

mechanism allows native IPv6 nodes and applications to

communicate with native IPv4 nodes and applications, and vice

versa. The NAT-PT translation architecture, depicted in Fig. 7,

also include one or more ALGs (Application Level Gateways).

Fig. 7. NAT-PT architecture

The basic NAT-PT function does not snoop packet payloads,

and the application may therefore be unaware of it. Hence, the

NAT-PT mechanism depends on ALG agents that allow an

IPv6 node to communicate with an IPv4 node and vice versa for

specific applications. The NAT-PT mechanism is an

interoperability solution that needs no modification or extra

software, such as dual stacks, to be installed on any of the end

user nodes, either the IPv4 or the IPv6 network. This

mechanism implements the required interoperability functions

within the core network, making interoperability between nodes

easier to manage and faster to manifest [6].

II. TRANSLATION MECHANISMS

The fundamentals of IPv4/IPv6 translation mechanisms are

discussed in BIS. But the implementation method is not

described because it is specific to the operating system.

Additionally, SIP is usually used for multimedia

communications, such as voice or video conference

applications. However, as these SIP applications depend on

service providers, it is difficult for the user to select optimum

SIP applications that will support IPv6 communication. In this

paper, we extend the BIS mechanisms to support SIP

applications, clarify the design for implementation, and develop

a special kernel module for Linux OS [4].

The Fig. 8 shows the system model for packet manipulation

in the developed kernel module. The functions of this module

are classified into address translation function, payload

modification function, and DNS message handling function.

The kernel module uses the Linux netfilter function to handle a

socket buffer for each packet. Therefore, modification of the

original Linux kernel is not required in order to use the

developed kernel module [4].

A. Packet Hook in Linux Netfilter

The need for virtual interface creation can be detected by

using netfilter hooks. Netfilter can be used by our

implementation to identify many of the events that trigger the

routing action. Netfilter consists of a number of hooks at

various points inside the Linux protocol stack. It allows user-

defined kernel modules to register callback functions to these

hooks. When a packet traverses a hook, the packet flows

through the user defined callback method inside the kernel

module [2].

Netfilter provides a packet manipulation framework inside

the Linux 2.4.x and 2.6.x kernel series, and it is also a set of

hooks inside the Linux kernel. Therefore, kernel modules can

register their callback function with the Linux network stack

and the function is called when packets traverse the respective

hook points. As netfilter also allows kernel modules to send the

hooked packets back to the network stack, these modules can

modify packet information without modification of the original

Linux kernel [3].

There are five hooks defined in the net-filter architecture, as

shown in Fig. 8. In the developed kernel module, outbound

packets from both IPv4 and IPv6 applications are hooked at the

point NF INET LOCAL OUT. In the Linux network stack, IPv4

and IPv6 are processed separately. Therefore, the developed

kernel module receives both IPv4 and IPv6 [9] packets

separately from the point NF INET LOCAL OUT. Whereas

IPv6 packets from IPv6 applications are sent back to the Linux

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5792

639

network stack immediately, at the point NF INET POST

ROUTING, IPv4 packets from IPv4 oriented applications

virtual IPv4 addresses to IPv4-oriented applications, enabling

them to communicate with IPv6 hosts through IPv6 networks.

Since the kernel module can be implemented without

modification of the general Linux kernel, it can easily be used

to support IPv4 applications undergo some manipulation, in

respect of address translation and payload modification, before

being sent back to the latter point. A similar differentiation is

made for inbound packets, where the respective stack points are

NF INET POST ROUTING and NF INET LOCAL IN.

Thus, IPv6 applications engage in real IPv6 communication

in the normal way, while IPv4 oriented applications perform

virtual IPv4 communication through IPv6 networks [3].

Fig. 8. Netfilter Hook

Fig. 9. IPV4/IPV6 translation implementation architecture

III. CONCLUSION

This paper presents a newly developed kernel module that

performs IPv4/IPv6 address translation for IPv4-oriented

Applications. This kernel module provides virtual IPv4

addresses to IPv4-oriented applications, enabling them to

communicate with IPv6 hosts through IPv6 networks. Since the

kernel module can be implemented without modification of the

general Linux kernel, it can easily be used to support IPv4

applications in IPv6 networks.

REFERENCES

[1] D.Shalini Punithavathani and K.Sankaranarayanan " IPv4/IPv6 Transition

Mechanisms " European Journal of Scientific Research ISSN 1450-216X

vol.34 No 1 (2009), pp.110-124

[2] M. Raste, D.B. Kulkarni "Design and implementation scheme for

deploying IPv4 over IPv6 tunnel" Journal of Network and Computer

Applications 32 (2008) 66 -77

[3] Katsuhiro Naito, Kazuo Mori, and Hideo Kobayashi " Kernel Module

Implementation of IPv4/IPv6 Translation Mechanisms for Ipv4-oriented

applications”

[4] Tomek Mrugalski " ip46nat Universal IPv4-IPv6 translator user's guide"

[5] Muzhir Shaban Al- Ani et al " IPv4/IPv6 Translation "International

Journal of Engineering Science and Technology (IJEST)

[6] J. William Atwood, Kedar C. Das, Xing (Scott) Jiang "Allowing IPv4

hosts to communicate with IPv6 hosts without modifying the software on

the IPv4 or IPv6 hosts ".

[7] Bhuwan Chhetri "Transition from IPv4 to IPv6" Turku University of

Applied Science 2015, 52.

[8] Peng Wu, Yong Cui, Jianping Wu, Jiangchuan Liu, Chris Metz,

“Transition from IPv4 to IPv6: A State-of-the-Art Survey”

[9] "IETF RFC 791", "I. S. I. at University of Southern California", Internet

Protocol DARPA Internet Program Protocol Specification, 1981.

[10] Jun Bi, Jianping Wu, and Xiaoxiang Leng, “ IPv4/IPv6 Transition

Technologies and University Architecture “, IJCSNS ,VOL.7 No.1,

January 2007.

