
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5782

522

Abstract—A software bug is a problem which causes a computer

program or system to crash or produce invalid output or to behave

unintended way. Software bugs are unavoidable. Many software

companies have to face large number of software bugs. Bug Triage

consumes more time for handling software bugs. It is the process

of assigning a new bug to the correct potential developer. In this

paper, we deal with the software bugs where large Software

Company spent lot many of their cost in the same. The step of

fixing the bug is called as bug triage where we correctly assign a

developer to a new bug. Here, we address the problem of data

reduction for bug triage. The problem of data reduction deal with

how to reduce the scale and improve the quality. Hence, we

combine instance selection with feature selection both

simultaneously to reduce bug dimension and word dimension. We

also extract the historical bug data set and predictive model to

build new data set. This work provides leveraging techniques on

data processing for high quality bug data in the software

development.

Index Terms— Bug triage, bug repositories, bug data reduction,

feature selection, instance selection, machine learning techniques.

I. INTRODUCTION

 Software companies spend over 45 percent of cost infixing

bugs. Due to the daily-reported bugs, a large number of new

bugs are stored in bug repositories. There are two challenges

related to bug data that may affect the effective use of bug

repositories in software development tasks, namely the large

scale and the low quality. On one hand, due to the daily-

reported bugs, a large number of new bugs are stored in bug

repositories. On the other hand, software techniques suffer from

the low quality of bug data. Two typical characteristics of low-

quality bugs are noise and redundancy. Noisy bugs may mislead

related developers while redundant bugs waste the limited time

of bug handling.

II. LITERATURE SURVEY

To avoid the expensive cost of manual bug triage, an

automatic bug triage approach was proposed, which applies text

classification techniques to predict developers for bug reports.

In this approach, a bug report is mapped to a document and a

related developer is mapped to the label of the document. Then,

bug triage is converted into a problem of text classification and

is automatically solved with mature text classification

techniques, e.g., Naive Bayes. Based on the results of text

classification, a human triage assigns new bugs by

incorporating his/her expertise. Literature survey is the most

important step in software development process. Before

developing the tool it is necessary to determine the time factor,

economy and company strength. Once these things are satisfied,

then next steps are to determine which operating system and

language can be used for developing the tool. Once the

programmers start building the tool the programmers need lot

of external support.

III. SURVEY ON RESEARCH PAPER

In this paper [1], Semi-automated approach uses a supervised

machine learning algorithm to suggest developers who may be

qualified to resolve the bug. It has provided help triage to

assigning bugs more efficient. If company has little knowledge

then new triage can work on it. Bug triage aims to allocate an

appropriate developer to fix a new bug that is to determine who

should fix a bug. Author first proposes the problem of automatic

bug triage to reduce the cost of manual bug triage. When a new

report arrives, the classifier produced by the supervised

machine learning technique offered a small number of

developers suitable to resolve the report. The process only can

work on two projects i.e., Mozilla and Firefox. In this Paper [2],

for the text representation and processing a concept of distance

graphs is proposed. This paper able to introduce the idea of

distance graph representations of text statistics. Such

representations preserve facts approximately the relative

ordering and distance between the words inside the graphs and

offer a far richer illustration in phrases of sentence shape of the

underlying facts. This technique permits knowledge discovery

from textual content which isn't always viable with using a

natural vector area representation, because it loses an awful lot

much less records approximately the ordering of the underlying

phrases. The detail study of the problems of similarity search,

plagiarism detection, and its applications wasn’t specified. In

This paper [3], it presents a dynamic test generation technique

Towards Effective Bug Triage with Software

Data Reduction Techniques Using Instance

Selection

Kunal Rawade1, Kishor Satpute2, Amar Chadchankar3

1,2Student, Dept. of Information Technology and Engg., Zeal College Of Engineering and Research, Pune, India
3Asst. Prof., Dept. of Information Tech. and Engg., Zeal College Of Engineering and Research, Pune, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5782

523

for the domain of dynamic Web applications. The technique

utilizes both combined concrete and symbolic execution and

explicit-state model checking. The technique generates tests

automatically, runs the tests capturing logical constraints on

inputs, and minimizes the conditions on the inputs to failing

tests so that the resulting bug reports are small and useful in

finding and fixing the underlying faults.

It detects run time error and use HTML validate as on oracle.

They perform automated analysis to minimize the size of failure

inducing input. In This Paper [4], here proposed an approach

where profile is created for each developer based on his

previous work and is mapped to a domain mapping matrix

which indicates the expertise of each developer in their

corresponding area. A key collaborative hub for many software

improvement projects is the bug file repository. Although its

use can enhance the software program improvement process in

some of methods, reports introduced to the repository want to

be triaged. A triage determines if a record is meaningful.

Significant reviews are then organized for integration into the

assignment's improvement system. To assist triages with their

work, this article offers a device getting to know method to

create recommenders that assist with a ramification of

selections aimed at streamlining the improvement method. This

paper created using this method have a precision among 70%

and ninety eight% over five open source projects. The software

developer improves the process of finding the solution in

number of way on particular error. It utilizes the expertise

profile of developers maintained in Domain Mapping Matrix

(DMM).

In This Paper [5], They Mentioned that the bug can be

automatically assign to the potential developer for evaluating

all the bug report carefully which saves resources used in bug

triage or bug assigning task. Bug triage, deciding what to do

with an incoming bug report, is taking up increasing amount of

developer resources in large open-source projects. In this paper,

propose to apply machine learning techniques to assist in bug

triage by using text categorization to predict the developer that

should work on the bug based on the bug’s description. We

demonstrate our approach on a collection of 15,859 bug reports

from a large open-source project. Our evaluation shows that our

prototype, using supervised Bayesian learning, can correctly

predict 30 % of the report assignments to developers. The two

problems with this approach is sometime the developer who fix

the bug is not the one to whom it was officially assigned, second

the algorithm does not proved to be as efficient as it was thought

to be.

A. Existing System

 In traditional software development, new bugs are manually

triaged by an expert developer, i.e., a human triage. Due to the

large number of daily bugs and the lack of expertise of all the

bugs, manual bug triage is expensive in time cost and low in

accuracy. Conventional software analysis is not fully suitable

for the large-scale and complex data in bug repositories. The

existing system working is:

1. In traditional software development, bugs were triaged by

human, the new bugs were triages by him manually. Triaging

the huge number of bugs manually takes much more time and

cost for them. To overcome the problem, automatic bug triage

system is introduced in the existing system. The automatic bug

triage system uses the text classification technique, in which

each the each reported bug is assigned to the developer.

Developer is mapped to the label of the document containing

bugs that are to be resolved. Bug triage is then converted into

the problem of text classification and bugs are automatically

solved with text classification techniques. For.eg. Naive Bayes.

From the results of text classification, a bug triage assigns new

bug by incorporating his/her expertise.

B. Proposed System

 In this paper, we propose a predictive model to determine

the order of applying instance selection and feature selection.

We address the problem of data reduction for bug triage, i.e.,

how to reduce the bug data to save the labor cost of developers

and improve the quality to facilitate the process of bug triage.

We evaluate the reduced bug data according to two criteria: the

scale of a data set and the accuracy of bug triage. To avoid the

bias of a single algorithm, we empirically examine the results

of four instance selection algorithms and four feature selection

algorithms. In our work, we combine existing techniques of

instance selection and feature selection to simultaneously

reduce the bug dimension and the word dimension. The reduced

bug data contain fewer bug reports and fewer words than the

original bug data and provide similar information over the

original bug data.

1. Data reduction for bug triage aims to build a small-

scale and high-quality set of bug data by removing bug

reports and words, which are redundant or non-

informative.

2. Given an instance selection algorithm and a feature

selection algorithm, the order of applying these two

algorithms may affect the results of bug triage.

3. Drawn on the experiences in software metrics, we

extract the attributes from historical bug data sets.

Then, we train a binary classifier on bug data sets with

extracted attributes and predict the order of applying

instance selection and feature selection for a new bug

data set.

4. In the experiments, we evaluate the data reduction for

bug triage on bug reports of two large open source

projects, namely Eclipse and Mozilla. Experimental

results show that applying the instance selection

technique to the data set can reduce bug reports but the

accuracy of bug triage may be decreased; applying the

feature selection technique can reduce words in the

bug data and the accuracy can be increased.

5. Meanwhile, combining both techniques can increase

the accuracy, as well as reduce bug reports and words.

For example, when 50% bug reports and 70% words

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5782

524

are removed, the accuracy of Naive Bayes on Eclipse

improves by 2% to 12% and the accuracy on Mozilla

improves by 1% to 6%. Based on the attributes from

historical bug data sets, our predictive model can

provide the accuracy of 71.8% for predicting the

reduction order.

C. Motivation

 Real-world data always include noise and redundancy.

Noisy data may mislead the data analysis techniques while

redundant data may increase the cost of data processing. In bug

repositories, all the bug reports are filled by developers in

natural languages. The low-quality bugs accumulate in bug

repositories with the growth in scale. Such large-scale and low-

quality bug data may deteriorate the effectiveness of fixing bug.

D. Architecture View

Fig. 1. Architecture view

E. System Architecture

 Illustration of reducing bug data for bug triage. Sub-figure

(a) presents the framework of existing work on bug triage.

Before training a classifier with a bug data set, we add a phase

of data reduction, in (b), which combines the techniques of

instance selection and feature selection to reduce the scale of

bug data. In bug data reduction, a problem is how to determine

the order of two reduction techniques. In (c), based on the

attributes of historical bug data sets, we propose a binary

classification method to predict reduction orders.

F. Problem Definition

 For reducing the affluent cost of manual bug triage we used

automatic bug triage method. To build a predictive model for a

new bug data sets that present the problem of data reduction for

bug triage.

IV. CONCLUSION

This paper presented an all-inclusive survey on the data

reduction technique for bug triage. The main features, the

advantages and disadvantages of each technique are described.

As Bug triage is a vital step of software maintenance in both

labor cost and time cost. The goal is to correctly assign a

developer to a new bug for further handling. Many software

companies spend their most of cost in dealing with these bugs.

The motivation of this work is to reduce the large scale of the

training set and to remove the noisy and redundant bug reports

for bug triage. As per survey, there is strong need to focus on

reducing bug data set in order to have less scale of data and

quality data. Propose the improved feature selection method by

using kruskal model for addressing the problem of data

reduction.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proc.

28th Int. Conf. Softw. Eng., May 2006, pp. 361–370.

[2] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.

Ernst, “Finding bugs in web applications using dynamic test generation

and explicit-state model checking,” IEEE Softw., vol. 36, no. 4, pp. 474–

494, Jul./Aug. 2010.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:

Recommenders for development-oriented decisions,” ACM Trans. Soft.

[4] Eng. Methodol., vol. 20, no. 3, article 10, Aug. 2011.

[5] C. C. Aggarwal and P. Zhao, “Towards graphical models for text

processing,” Knowl. Inform. Syst., vol. 36, no. 1, pp. 1–21, 2013.

[6] Bugzilla, (2014). [Online].Avaialble: http://bugzilla.org/

[7] K. Balog, L. Azzopardi, and M. de Rijke, “Formal models for expert

finding in enterprise corpora,” in Proc. 29th Annu.Int. ACM SIGIR

Conf.Res. Develop. Inform. Retrieval, Aug. 2006, pp. 43–50.

[8] P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using quad

tree-based k-means clustering algorithm,” IEEE Trans. Knowl. Data

[9] Eng., vol. 24, no. 6, pp. 1146–1150, Jun. 2012.

[10] H. Brighton and C. Mellish, “Advances in instance selection for instance-

based learning algorithms,” Data Mining Knowl. Discovery, vol. 6, no. 2,

pp. 153–172, Apr. 2002.

[11] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs

in bug reports: Improving cooperation between developers and users,”

inProc. ACM Conf. Comput. Supported Cooperative Work, Feb. 2010,

pp. 301–310.

[12] V. Bolon-Canedo, N. S anchez-Marono, and A. Alonso-Betanzos, “A

review of feature selection methods on synthetic data,” Knowl.

Inform.Syst., vol. 34, no. 3, pp. 483–519, 2013.

[13] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active

learning,” Knowl. Inform. Syst., vol. 35, no. 2, pp. 249–283, 2013.

[14] I. Guyon and A. Elisseeff, “An introduction to variable and feature

selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

