
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-8, August 2018

www.ijresm.com ISSN (Online): 2581-5782

111

Design and Implementation of Different Multipliers

Using VHDL
Chandramohan Kumrawat1, Deepak Sharma2

1Student, Department of Electronics and Communications, LKCT, Indore, India
2Assistant Professor, Department of Electronics and Communications, LKCT, Indore, India

Abstract: High speed multiplier Low power consumption and

smaller area are some of the most important criteria for the

fabrication of DSP systems and high performance systems.

Project presents an efficient implementation of high speed

multiplier using the shift and add method, Radix_2, Radix_4

modified Booth multiplier algorithm. To design these types of

multiplier, different types of adders like sixteen bit full adder can

be used. After that we will design a 4 tap delay FIR filter and in

place of the multiplication and addition we would use that

multipliers and adders which we have implemented. Then we will

compare the working of different multipliers by comparing the

power consumption by each of them. The project helps us to

choose a better option between serial and parallel multiplier in

fabricating different systems.

Keywords: Multipliers, VHDL.

I. INTRODUCTION

Multipliers are key components of many high performance

systems. However, Area and speed are usually conflicting

constraints so that improving speed results mostly in larger

areas. As a result, a whole spectrum of multipliers with

different area-speed Constraints has been designed with fully

parallel. These multipliers have moderate performance in both

speed and area. The pipelining done at the digit level brings the

benefit of constant operation speed irrespective of the size of’

the multiplier.

The VHDL language supports these modelling needs at the

algorithm or behavioral level, and at the implementation or

structural level. It provides a versatile set of description

facilities to model DSP circuits from the system level to the

gate level. Recently, we have also noticed efforts to include

circuit-level modelling in VHDL. At the system level we can

build behavioral models to describe algorithms and

architectures. We would use concurrent processes with

constructs common to many high-level languages, such as if,

case, loop, wait, and assert statements. VHDL also includes

user-defined types, functions, procedures, and packages." In

many respects VHDL is a very powerful, high-level,

concurrent programming language. At the implementation

level we can build structural models using component

instantiation statements that connect and invoke

subcomponents. The VHDL generate statement provides ease

of block replication and control. A dataflow level of description

offers a combination of the behavioral and structural levels of

description. VHDL lets us use all three levels to describe a

single component. Most importantly, the standardization of

VHDL has spurred the development of model libraries and

design and development tools at every level of abstraction.

VHDL, as a consensus description language and design

environment, offers design tool portability, easy technical

exchange, and technology insertion.

II. PURPOSE OF IMPLEMENTATION

Power consumption in VLSI DSPs has gained special

attention due to the proliferation of high-performance portable

battery-powered electronic devices such as cellular phones,

laptop computers, etc. DSP applications require high

computational speed and, at the same time, suffer from

stringent power dissipation constraints. Multiplier modules are

common to many DSP applications. The fastest types of

multipliers are parallel multipliers. Among these, the Wallace

multiplier is among the fastest. However, they suffer from a

bad regularity. Hence, when regularity, high performance and

low power are primary concerns, Booth multipliers tend to be

the primary choice. Booth multipliers allow the operation on

signed operands in 2's complement. They derive from array

multipliers where, for each bit in a partial product line, an

encoding scheme is used to determine if this bit is positive,

negative or zero. The Modified Booth algorithm achieves a

major performance improvement through radix-4 encoding. In

this algorithm each partial product line operates on 2 bits at a

time, thereby reducing the total number of the partial products.

This is particularly true for operands using 16 bits or more.

III. SYSTEM DESIGN

A. Binary Multiplier

A Binary multiplier is an electronic hardware device used in

digital electronics or a computer or other electronic device to

perform rapid multiplication of two numbers in binary

representation. It is built using binary adders. The rules for

binary multiplication can be stated as follows [2],

Fig. 1. Multiplication Hardware Implementation

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-8, August 2018

www.ijresm.com ISSN (Online): 2581-5782

112

1) If the multiplier digit is a 1, the multiplicand is simply

copied down and represents the product.

2) If the multiplier digit is a 0 the product is also 0. For

designing a multiplier circuit we should have circuitry to

provide or do the following three things:

1. It should be capable identifying whether a bit 0 or 1

is.

2. It should be capable of shifting left partial products.

3. It should be able to add all the partial products to give

the products as sum of partial products. [2].

B. Booth Multiplier

The decision to use a Radix-4 modified Booth algorithm

rather than Radix-2 Booth algorithm is that in Radix-4, the

number of partial products is reduced to n/2. Though Wallace

Tree structure multipliers could be used but in this format, the

multiplier array becomes very large and requires large numbers

of logic gates and interconnecting wires which makes the chip

design large and slows down the operating speed.

RA

RA-RA

2RA-2RA

MUX

RB

RB(N+1)

CONTROL

ADDER

RZ(2N)

SHIFTER

Fig. 2. Block diagram of Booth multiplier algorithm

1. Booth Multiplication Algorithm for radix-2

Booth algorithm gives a procedure for multiplying binary

integers in signed –2’s complement representation. I will

illustrate the booth algorithm with the following Example, 2

ten x (- 4) ten 0010 two* 1100 two

Step 1: Making the Booth table

From the two numbers, pick the number with the smallest

difference between a series of consecutive numbers, and make

it a multiplier.

i.e., 0010 -- From 0 to 0 no change, 0 to 1 one change, 1 to 0

another change, and so there are two changes on this one

1100 -- From 1 to 1 no change, 1 to 0 one change, 0 to 0 no

change, so there is only one change on this one.

Therefore, multiplication of 2 x (– 4), where 2 ten (0010 two)

is the multiplicand and (– 4) ten (1100 two) is the multiplier.

II. Let X = 1100 (multiplier)

 Let Y = 0010 (multiplicand)

Take the 2’s complement of Y and call it –Y –Y = 1110

III. Load the X value in the table.

IV. Load 0 for X-1 value it should be the previous first least

significant bit of X

V. Load 0 in U and V rows which will have the product of X

and Y at the end of operation.

VI. Make four rows for each cycle; this is because we are

multiplying four bits numbers.

Load Value

1stCycle

2nd Cycle

3rd Cycle

4thCycle

Step 2: Booth Algorithm

Booth algorithm requires examination of the multiplier bits,

and shifting of the partial product. Prior to the shifting, the

multiplicand may be added to partial product, subtracted from

the partial product, or left unchanged according to the

following rules:

Look at the first least significant bits of the multiplier “X”, and

the previous least significant bits of the multiplier “X - 1”.

I. 0 0 Shift only

 1 1 Shift only.

 0 1 Add Y to U, and shift

 1 0 Subtract Y from U, and shift or add (-Y) to U & shift

II. Take U & V together and shift arithmetic right shift

which preserves the sign bit of 2’s complement number.

Thus a positive number remains positive, and a negative

number remains negative.

III. Shift X circular right shifts because this will prevent us

from using two registers for the X value shift only

2. Booth Multiplication Algorithm for radix-

One of the solutions of realizing high speed multipliers is to

enhance parallelism which helps to decrease the number of

subsequent calculation stages. The original version of the

Booth algorithm (Radix-2) had two drawbacks. They are:

1. The number of add subtract operations and the

number of shift an operation becomes variable and

U V x x -1

0000 0000 1100 0

U V x x-1

0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0

1 1 1 0

1 1 1 1

0 0 0 0

0 0 0 0

0 0 1 1

1 0 0 1

0

1

1 1 1 1 1 0 0 0 1 1 0 0 1

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-8, August 2018

www.ijresm.com ISSN (Online): 2581-5782

113

becomes inconvenient in designing parallel

multipliers.

2. The algorithm becomes inefficient when there are

isolated 1’s. These problems are overcome by using

modified Radix4

Booth algorithm which scan strings of three bits with the

algorithm given below:

1) Extend the sign bit 1 position if necessary to ensure that

n is even.

2) Append a 0 to the right of the LSB of the multiplier.

3) According to the value of each vector, each Partial

Product will he 0, +y , -y, +2y or -2y. The negative values

of y are made by taking the 2’s complement and in this

paper Carry-look-ahead (CLA) fast adders are used. The

multiplication of y is done by shifting y by one bit to the

left. Thus, in any case, in designing a n-bit parallel

multipliers, only n/2 partial products are generated. Table

I Radix4 Modified Booth algorithm scheme for odd

values of i.

IV. EXPECTED RESULT

TABLE I

ARRAY MULTIPLIER

TABLE II

RADIX 2 BOOTH MULTIPLIER

TABLE III

RADIX 2 BOOTH MULTIPLIER

Fig. 3. Multiplier output

V. CONCLUSION

While comparing the radix 2 and the radix 4 booth multipliers

we found that radix 4 consumes lesser power than that of radix

2. This is because it uses almost half number of iteration and

adders when compared to radix 2. When all the three

multipliers were compared we found that array multipliers are

most power consuming and have the maximum area. This is

because it uses a large number of adders. As a result it slows

down the system because now the system has to do a lot of

calculation. Multipliers are one the most important component

of many systems. So we always need to find a better solution

in case of multipliers. Our multipliers should always consume

less power and cover less power. So through our project we try

to determine which of the three algorithms works the best. In

the end we determine that radix 4 modified booth algorithm

works the best.

VI. FUTURE WORK

In our project we will try to determine the best solution to this

problem by comparing a few multipliers. This project presents

an efficient implementation of high speed multiplier using the

shift and add method, Radix_2, Radix_4 modified Booth

multiplier algorithm. In this project we compare the working of

the multiplier by implementing each of them separately in FIR

filter. For this purpose we will first design three different type

of multipliers using shift method, radix 2 and radix 4 modified

booth multiplier algorithm. To design these types of multiplier,

different types of adders like sixteen bit full adder can be used.

After that we will design a 4 tap delay FIR filter and in place

of the multiplication and addition we would use that multipliers

and adders which we have implemented. Then we will compare

the working of different multipliers by comparing the power

consumption by each of them. The project helps us to choose a

better option between serial and parallel multiplier in

fabricating different systems.

REFERENCES

[1] Circuit Design using VHDL, by Pedroni, page number 285-293.

[2] VHDL by Sjoholm Stefan, VHDL by B. Bhaskar

[3] VHDL by B Bhaskar

[4] Parhami, Behrooz. Computer Arithmetic: Algorithms and Hardware

Designs. New York: Oxford, 2005.

[5] Tam, Nguyen, Long Pham, Jon Benson. BOOTH’S Multiplier & 32 Bit

ALU for ARM7 microprocessor ECE 345, Initial project proposal Date:

FEB /8/ 2000

[6] Digital Signal Processing by Johnny R Johnson, PHI publications.

[7] Digital Signal Processing by Vallavraj & Salivhanan, TMH publications.

X (i) X(i-1) X(i-2) y

0 0 0 +0

0 0 1 +y

0 1 0 +y

0 1 1 +2y

1 0 0 -2y

1 0 1 -y

1 1 0 -y

1 1 1 +0

Number of Slices 229

Number of 4 input LUT’s 302

Number of Bonded Input 16

Number of Bonded output 16

CLB Logic Power 104 mW

Number of Slices 130

Number of 4 input LUT’s 249

Number of Bonded Input 16

Number of Bonded output 17

CLB Logic Power 79mW

Number of Slices 229

Number of 4 input LUT’s 302

Number of Bonded Input 16

Number of Bonded output 16

CLB Logic Power 47 mW

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-8, August 2018

www.ijresm.com ISSN (Online): 2581-5782

114

[8] Patterson, David and Hennessy, John. Computer Organization and

Design - The Hardware/Software Interface, San Francisco: Morgan

Kaufmann Publishers, 1998.

[9] Martinez – Peiro and Lars Wanhammar. Department of Electronic Eng.

University of Valencia. High Speed, Low Complexity FIR Filter Using

Multiplier Block Reduction and Polyphase Decomposition.

[10] Ruchi Sharma Analysis of Different Multiplier with Digital Filters Using

VHDL Language. International Journal of Engineering and Advanced

Technology, vol. 2, no. 1, October 2012.

[11] S. Chouhan, Y. Kumar, “Low Power Designing of FIR Filters,” in

International Journal of Advanced Technology & Engineering Research,

vol. 2, no. 2, pp. 59-67, 2012.

[12] Shambhavi S, K B ShivaKumar, M Z Kurian, H S Jayaramu. Multiplier

Based On Add And Shift Method By Passing Zero. Department of EC,

Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India.

[13] Fábio Fabian Daitx Wagner S. Rosa Eduardo Costa Paulo Flores Sergio

VHDL Generation of Optimized FIR Filters, 2008 International

Conference on Signals, Circuits and Systems, Brazil.

