
INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING, SCIENCE AND MANAGEMENT, VOL. 1, NO. 6, JUNE 2018, WWW.IJRESM.COM 29

Efficient Processing of Skyline Queries Considering
Medical Field as Case Study

Chethana C. R1 and Mohamed Rafi2

1Student, Department Of Computer Science & Engineering, University BDT College of Engineering, Davanagere, India
2Professor, Department Of Computer Science & Engineering, University BDT College of Engineering, Davanagere, India

Abstract—The skyline operator has attracted considerable
attention recently due to its broad applications. However, com-
puting a skyline is challenging today since we have to deal
with big data. For data-intensive applications, the MapReduce
framework has been widely used recently. In this paper, we
propose the efficient parallel algorithm SKY-MR+ for processing
skyline queries using MapReduce. We first build a quadtree-
based histogram for space partitioning by deciding whether to
split each leaf node judiciously based on the benefit of splitting
in terms of the estimated execution time. In addition, we apply
the dominance power filtering method to effectively prune non-
skyline points in advance. We next partition data based on the
regions divided by the quadtree and compute candidate skyline
points for each partition using MapReduce. Finally, we check
whether each skyline candidate point is actually a skyline point in
every partition using MapReduce. We also develop the workload
balancing methods to make the estimated execution times of all
available machines to be similar.

Index Terms—data mining, map reduce prediction, SKY-MR

I. INTRODUCTION

The skyline operator and its variants have attracted consid-
erable attention recently due to their broad applications such
as product recommendations, review evaluations with user
ratings, querying wireless sensor networks and graph analysis.
However, computing a skyline is challenging today since we
have to deal with big data. For data-intensive applications
including similarity joins and top-k substring matching, the
MapReduce framework has been considered as a de facto
standard. Thus, several skyline processing algorithms using
MapReduce have been proposed.

MR-GPMRS in consists of the partitioning and global
skyline phases. The partitioning phase of MR-GPMRS divides
the data space into grid partitions and prunes the partitions that
cannot contain any skyline point by utilizing the dominance
relationships between grid partitions. In the global skyline
phase, in every unpruned partition P, the points which are
located in other unpruned partitions and may dominate a point
in P are first collected and each point in the partition P is
compared with the collected points to determine whether it is
a global skyline point in parallel. To compute the skyline effi-
ciently, an additional local skyline phase is involved between
the partitioning and global skyline phases in MR-BNL, PPF-
PGP and SKY-MR. They compute the local skyline for each
partition and use them to compute the skyline in the global
skyline phase. The benefit of the additional phase is that the
overheads of computing the skyline as well as distributing the
points via the network in the global skyline phase are Reduced

since the number of local skyline points in each partition is
much less than that of all points in the partition.

II. EXISTING SYSTEM

Computing a skyline is challenging today since we have to
deal with big data. For data-intensive applications including
similarity joins and top-k substring matching, the MapReduce
framework has been considered as a de facto standard. Thus,
several skyline processing algorithms using MapReduce have
been proposed. MR-GPMRS in consists of the partitioning and
global skyline phases. The partitioning phase of MR-GPMRS
divides the data space into grid partitions and prunes the
partitions that cannot contain any skyline point by utilizing the
dominance relationships between grid partitions. In the global
skyline phase, in every unpruned partition P, the points which
are located in other unpruned partitions and may dominate a
point in P are first collected and each point in the partition P
is compared with the collected points to determine whether it
is a global skyline point in parallel.
Drawbacks of SKY-MR: SKY-MR builds a sky-quadtree from
a sample of data based on the user-defined parameter split
threshold which is the maximum number of points in each
leaf node. As the split threshold decreases, the number of leaf
nodes in the quadtree tends to increase and more points are
allowed to be pruned by the dominance relationships between
leaf nodes in the local skyline phase. In contrast, decreasing
split threshold has an adverse effect on the network overhead
by transmitting more duplicates of local skyline points to
other leaf nodes in the global skyline phase. Since there is
a trade-off between the costs of the local and global skyline
phases, when a reasonable split threshold is not provided,
its performance suffers. Furthermore, since SKY-MR as well
as the other MapReduce skyline algorithmsdo not consider
workload balancing, the performances of the algorithms could
degrade. Finally, there is still a lot of room for improvement to
reduce the communication and computation costs of the local
skyline phase.

III. PROPOSED SYSTEM

A. The MapReduce Framework

MapReduce or its open-source equivalent Hadoopis a
widely used framework for data-intensive parallel computation
in shared-nothing clusters of machines. In Hadoop, data is
represented as key-value pairs. Hadoop divides the input data
to a MapReduce job into fixed-size pieces called chunks and



INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING, SCIENCE AND MANAGEMENT, VOL. 1, NO. 6, JUNE 2018, WWW.IJRESM.COM 30

spawns a mapper task for each chunk. The mapper task invokes
a map function for each key-value pair in the chunk and the
map function may output several key-value pairs. The key-
value pairs emitted by all map functions are grouped by keys in
the shuffling phase and passed to reducer tasks to generate the
final output.Users can control which key goes to which reducer
task by modifying a Partitioner class. For each distinct key, the
reduce task invokes a reduce function with the key and the list
of all values sharing the key as input. A reduce function may
generate several key-value pairs. Each mapper (or reducer)
task can execute a setup function before invoking map (or
reduce) functions and a cleanup function after executing all
map (or reduce) functions. Hadoop executes the main function
on a single master machine

B. SKY-MR: The state-of-the-art Algorithm
1) Sky-quadtree building phase: SKY-MR builds a

skyquadtree with a sample of data to split the data space into
several partitions. The d-dimensional data space is subdivided
recursively into 2d equi-sized sub-regions each of which is
associated with a node of the sky-quadtree until each sub-
region contains at most a predefined number of points called
the split threshold. According to the dominance relationships
between the regions represented by nodes, every node without
any skyline point is marked as “pruned”.

2) Local skyline phase: For each unpruned leaf node n
of the sky-quadtree, the local skyline of P(n), denoted by
SL(P(n)), is computed where P(n) is all points in the region
represented by n. To reduce the number of checking domi-
nance relationships between points in the next phase, virtual
max points and sky-filter points are computed after the local
skylines are obtained. The virtual max point vpn of a leaf
node n is an artificial d-dimensional point such that vpn(k)=
maxp2SL(P(n))p(k) with 1kd. In each leaf node n, we also
select a single local skyline point, called a sky-filter point,
which has the minimum value for every dimension.

3) Global skyline phase: Each local skyline point in every
unpruned leaf node is checked whether it is a global skyline
point or not by comparing it with the local skyline points in
the region of the other unpruned leaf nodes. When the total
number of local skyline points is less than the size threshold,
a single machine is used to speed up. SKY-MR first collects
all virtual

max and sky-filter points of every leaf node. If a local sky-
line point p located in the region of a leaf node is dominated
by any sky-filter point, p is discarded without comparing to
the local skyline points of the other unpruned leaf nodes. The
number of checking dominance relationships between a pair
of points can be even more reduced by utilizing the virtual
max points. For an unpruned leaf node n, it is shown in that
if a local skyline point p0 in another leaf node n0 does not
dominate the virtual max point of the leaf node n (i.e., p06
vpn), the point p0 does not dominate every local skyline point
in SL(P(n)). Thus, in every unpruned leaf node n, each local
skyline point p in the region of n becomes a skyline point
if p is not dominated by every local skyline point p0 which
dominates vpn and is in the region of the other unpruned leaf
nodes.

IV. RELATED WORKS

After skyline processing was introduced in [1], several
serial algorithms for computing skylines and its variants were
introduced in [2], [3]. However, existing serial skyline algo-
rithms utilizing centralized indexing structures such as B+-
trees and R-trees are not suitable to be parallelized using
MapReduce since the MapReduce framework does not provide
the functionality for building and accessing centralized index-
ing structures. Although we focus on computing the skyline
using MapReduce, we still need a serial skyline algorithm to
calculate the local skyline for each partition. Thus, among the
serial skyline algorithms [1] without using centralized indexes,
we adopt the state-of-the-art algorithm BSkyTree-P. To split
the data space into 2d partitions, BSkyTree-P first selects a
pivot point. Then, every point dominated by the pivot point
is removed and BSkyTree-P recursively divides the partitions
into sub-partitions until each partition contains at most one
point. It next merges the partitions and computes the local
skyline of the merged partition repeatedly until there is a single
partition and then the global skyline is obtained.

Recently, skyline processing algorithms in distributed en-
vironments such as MapReduce, sensor networks [6] and
other distributed systems have been proposed. The MapRe-
duce algorithms for probabilistic skyline queries and subspace
skyline queries are also proposed. Among the above works,
we next illustrate MR-GPMRS, MR-BNL, PPF-PGPS and
SKY-MR briefly since they are the most relevant works to
ours. The details of the state-of-theart algorithm SKY-MR.
While MR-GPMRS consists of the partitioning and global
skyline phases only, MR-BNL, PPF-PGPS and SKY-MR [14]
are composed of the partitioning, local skyline and global
skyline phases. In the partitioning phase, the space is split
into partitions by using sky-quadtree partitioning in SKY-MR,
angle-based partitioning in PPFPGPS or grid partitioning in
MR-GPMRS and MR-BNL. In contrast to MR-GPMRS using
two phases, MR-BNL, PPFPGPS and SKY-MR compute the
local skyline for each partition in the additional local skyline
phase. Then, in the global skyline phase, MR-GPMRS, MR-
BNL, PPF-PGPS and SKY-MR compute the global skyline.
Since MR-BNL uses only up to 2d machines in the local
skyline phase where d is the number of dimensions, the
machines participating in the MapReduce framework could not
be fully utilized. In addition, since a single machine computes
the global skyline, MR-BNL is inefficient when a large number
of local skyline points are produced. On the contrary, SKY-
MR utilizes all available machines at the local and global
skyline phases. Furthermore, in the local skyline phase, SKY-
MR performs additional pruning by utilizing the dominance
relationships between partitions. It is shown in [14] that SKY-
MR outperforms MR-BNL. Since PPF-PGPS uses a single
machine to compute the global skyline, SKYMR also shows
better performance than PPF-PGPS. In addition, SKY-MR is
generally more efficient than MR-GPMRS since MR-GPMRS
does not have the local skyline phase. Although the works
are not proposed for MapReduce, since they can be processed
with MapReduce, we present them here.

The 1-step and 2-step algorithms split the data space into



INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING, SCIENCE AND MANAGEMENT, VOL. 1, NO. 6, JUNE 2018, WWW.IJRESM.COM 31

grid partitions. They next prune the partitions with no skyline
point and compute the global skyline for every unpruned
partition in parallel. While both algorithms split the data space
into a fixed number of grids, SKY-MR varies the number of
partitions adaptively based on the data distribution.

The algorithm PPPS for multi-core machines utilizes the
angle-based space partitioning. PPPS recursively splits each
partition into two partitions until the number of the partitions
becomes the desired number of CPU cores c. The local skyline
is next computed for every partition in parallel. Finally, PPPS
performs a bottom-up merge in O(log(c)) iterations until there
remains a single partition only. Since PPPS can utilize c=2i
cores only in the i-th merging iteration, multi-cores are not
fully utilized. However, SKY-MR computes the global skyline
by considering each partition independently and utilizing all
available machines simultaneously. As expected, that SKY-
MR is superior to the MapReduce implementations of the
algorithms.

The authors in [1], propose to extend database systems
by a Skyline operation. This operation filters out a set of
interesting points from a potentially large set of data points.
A point is interesting if it is not dominated by any other
point. For example, a hotel might be interesting for somebody
traveling to Nassau if no other hotel is both cheaper and closer
to the beach. We show how SQL can be extended to pose
Skyline queries, present and evaluate alternative algorithms to
implement the Skyline operation, and show how this operation
can be combined with other database operations, e.g., join.

The authors in [2]: The skyline of a set of d-dimensional
points contains the points that are not dominated by any other
point on all dimensions. Skyline computation has recently
received considerable attention in the database community,
especially for progressive (or online) algorithms that can
quickly return the first skyline points without having to read
the entire data file. Currently, the most efficient algorithm is
NN (nearest neighbors), which applies the divideand-conquer
framework on datasets indexed by R-trees. Although NN has
some desirable features (such as high speed for returning
the initial skyline points, applicability to arbitrary data dis-
tributions and dimensions), it also presents several inherent
disadvantages (need for duplicate elimination if d¿2, multiple
accesses of the same node, large space overhead). In this paper
we develop BBS (branch-and-bound skyline), a progressive
algorithm also based on nearest neighbor search, which is IO
optimal, i.e., it performs a single access only to those R-tree
nodes that may contain skyline points. Furthermore, it does
not retrieve duplicates and its space overhead is significantly
smaller than that of NN. Finally, BBS is simple to implement
and can be efficiently applied to a variety of alternative skyline
queries. An analytical and experimental comparison shows that
BBS outperforms NN (usually by orders of magnitude) under
all problem instances.

The authors in [3]: In this paper, for the first time, we
introduce the concept of Reverse Skyline Queries. At first,
we consider for a multidimensional data set P the problem
of dynamic skyline queries according to a query point q.
This kind of dynamic skyline corresponds to the skyline of
a transformed data space where point q becomes the origin

and all points of P are represented by their distance vector
to q. The reverse skyline query returns the objects whose
dynamic skyline contains the query object q. In order to
compute the reverse skyline of an arbitrary query point, we
first propose a Branch and Bound algorithm (called BBRS),
which is an improved customization of the original BBS
algorithm. Furthermore, we identify a super set of the reverse
skyline that is used to bound the search space while computing
the reverse skyline. To further reduce the computational cost
of determining if a point belongs to the reverse skyline, we
propose an enhanced algorithm (called RSSA) that is based on
accurate pre-computed approximations of the skylines. These
approximations are used to identify whether a point belongs
to the reverse skyline or not. Through extensive experiments
with both real-world and synthetic datasets, we show that our
algorithms can efficiently support reverse skyline queries. Our
enhanced approach improves reversed skyline processing by
up to an order of magnitude compared to the algorithm without
the usage of pre-computed approximations.

The authors in [4]: We demonstrate Product EntityCube,
a product recommendation and navigation system. While the
unprecedented scale of a product search portal enables to
satisfy users with diverse needs, this scale also complicates
product recommendation. Specifically, our target application
poses a unique challenge of overcoming insufficient user
profiles and feedbacks. To address this problem, we organize
query results into clusters representing different user percep-
tions of similarity, and provide a navigational UI to handle
personal interests. Specifically, we first discuss hybrid object
clustering capturing diverse user perception from millions of
Web pages and disambiguating different senses using feature-
based similarity. We then discuss skyline object ranking to
highlight interesting items at each cluster. Our demonstration
illustrates how Product EntityCube can enrich user product
shopping experiences.

The authors in [5]: Given an extensive corpus of reviews
on an item, a potential customer goes through the expressed
opinions and collects information, in order to form an educated
opinion and, ultimately, make a purchase decision. This task
is often hindered by false reviews, that fail to capture the true
quality of the item’s attributes. These reviews may be based on
insufficient information or may even be fraudulent, submitted
to manipulate the item’s reputation. In this paper, we formalize
the Confident Search paradigm for review corpora. We then
present a complete search framework which, given a set of
item attributes, is able to efficiently search through a large
corpus and select a compact set of high-quality reviews that
accurately captures the overall consensus of the reviewers on
the specified attributes.We also introduce CREST (Confident
Review Search Tool), a user-friendly implementation of our
framework and a valuable tool for any person dealing with
large review corpora. The efficacy of our framework is demon-
strated through a rigorous experimental evaluation.

V. RESULTS

The results are shows in Fig. 1 and Fig. 2.



INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING, SCIENCE AND MANAGEMENT, VOL. 1, NO. 6, JUNE 2018, WWW.IJRESM.COM 32

Fig. 1. Reults-1

Fig. 2. Results-2

VI. CONCLUSION

The parallel skyline computation using MapReduce and
develop the algorithm SKY-MR+. We first build a sky-

qtree+ with an adaptive quadtree building technique to utilize
the dominance relationships between regions and apply the
dominance power filtering method to effectively prune out
non-skyline points in advance. SKY-MR+ partitions the data
based on the regions split by the sky-qtree+ and computes
the candidate skyline points independently for each partition.
Finally, we check whether each skyline candidate point is
actually a skyline point in every partition independently. To
make the estimated execution times of all available machines
to be similar, we develop workload balancing techniques.

REFERENCES

[1] S. Borzsony, D. Kossmann and K. Stocker, “The Skyline Operator,”
in Proceedings 17th International Conference on Data Engineering,
Heidelberg, 2001, pp. 421-430.

[2] D. Papadias, Y. Tao, G. Fu and B. Seeger, “An Optimal and Progressive
Algorithm for Skyline Queries,” in Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, 2003, pp.
467-478.

[3] E. Dellis and B. Seeger, “Efficient Computation of Reverse Skyline
Queries,” in Proceedings of the 33rd international conference on Very
large data bases, 2007, pp. 291-302.

[4] J. Lee and S. Hwang, “Scalable Skyline Computation Using a Balanced
Pivot Selection Technique,” in Information Systems, vol. 39, pp. 1-21,
January 2014.

[5] F. N. Afrati, P. Koutris, D. Suciu and J. D. Ullman, “Parallel Skyline
Queries,” in ICDT, 2012, pp. 274–284.

[6] H. Kohler, J. Yang and X. Zhou, “Efficient Parallel Skyline Process-
ing Using Hyperplane Projections,” in Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, 2011, pp.
85-96.


