INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING, SCIENCE AND MANAGEMENT, VOL. 1, NO. 6, JUNE 2018, WWW.IJRESM.COM 19

Bug Triaging Mechanism for Non Reproducible
Bugs

Akshay Patil', Vaishnavi Ingole?, and Arpit Bobade®

L23Student, Department of Computer Engineering, Dr. D.Y. Patil College of Engg., Pune, India

Abstract—The objective of this research work is to develop
a proficient recommender system for effective bug triaging. We
primarily focus the bug reduction system in this project with an
assumption that the communication channel between developer
and the bug reduction is maintained. We have to prevent re-
dundant bug in the repository.Programming organizations spend
more than 45 percent of cost in managing programming bugs.
An unavoidable stride of settling bugs is bug triage, which means
to effectively appoint a designer to another bug. To diminish the
time cost in manual work,content order procedures are connected
to lead programmed bug triage. In this paper, we address the
issue of information decrease for bug triage, i.e., how to lessen the
scale and enhance the nature of bug information. We consolidate
occurrence determination with include choice to at the same
time diminish information scale on the bug measurement and
the word measurement. To decide the request of applying case
choice and highlight determination, we separate characteristics
from recorded bug informational collections and construct a
prescient model for another bug informational collection. We
observationally research the execution of information lessening on
absolutely 600,000 bug reports of two huge open source ventures,
in particular Eclipse and Mozilla. The outcomes demonstrate
that our information decrease can adequately diminish the
information scale and enhance the precision of bug triage.

Index Terms—application of data preprocessing, bug data
reduction,bug triage, data management in bug repositories,
feature selection, instance selection, mining software repositories,
prediction, reduction technique

I. INTRODUCTION

Mining software repositories is an interdisciplinary domain,
which aims to employ data mining to deal with software
engineering problems [6]. In modern soft-ware development,
software repositories are large-scale databases for storing
the output of software development, e.g., source code, bugs,
emails, and specifications. Traditional software analysis is
not completely suitable for the large-scale and complex data
in software repositories [5]. Data mining has emerged as a
promising means to handle software data. By leveraging data
mining techniques, mining software repositories can uncover
interesting information in software repositories and solve real
world software problems. A bug(a typical software reposi-
tory, for storing details of bugs), plays an important role in
managing soft-ware bugs. Software bugs are inevitable and
fixing bugs are expensive in software development. Software
companies spend over percent of cost in fixing bugs [3].
Large soft-ware projects deploy bug repositories (also called
bug tracking systems) to support information collection and
to assist developers to handle bugs. In a bug repository, a
bug is maintained as a bug report, which records the textual

description of reproducing the bug and updates according to
the status of bug fixing [5]. A bug repository provides a data
platform to support many types of tasks on bugs, e.g., fault
prediction [7], [4], bug localization [2], and reopened-bug
analysis [3]. In this paper, bug reports in a bug repository
are called bug data.

II. OBJECTIVES

1) Study of multiple feature selection techniques to classify
bugs in software code changes.

2) Use of triage algorithm to utilize accuracy and cost of
bug prediction

3) We have focused on reducing bug data set in order to
have less scale of data and quality data.

4) Data reduction more in bug triage to explore how to
prepare a high quality bug data set.

III. A1Mm

We are doing data reduction on bug data set which will
reduce the scale of the data as well as increase the quality of
the data. We are using instance selection and feature selection
simultaneously with historical bug data.

IV. RELATED WORK

A survey on instance selection for active learning [1],
from this paper we refer: Active learning aims to train an
accurate prediction model with minimum cost by labelling
most informative instances. In this paper, we survey existing
works on active learning from an instance selection perspective
and classify them into two categories with a progressive
relationship: (1) active learning merely based on uncertainty
of independent and identically distributed (IID) instances, and
(2) active learning by further taking into account instance
correlations. Using the above categorization, we summarize
major approaches in the field, along with their technical
strengths/weaknesses, followed by a simple runtime perfor-
mance comparison, and discussion about emerging active
learning applications and instance-selection challenges therein.
This survey intends to provide a high-level summarization for
active learning and motivates interested readers to consider
instance-selection approaches for designing effective active
learning solutions.

Towards More Accurate Retrieval of Duplicate Bug Reports
[2], from this paper we refer: In a bug tracking system,
different testers or users may submit multiple reports on the
same bugs, referred to as Duplicates, which may cost extra

INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING, SCIENCE AND MANAGEMENT, VOL. 1, NO. 6, JUNE 2018, WWW.IJRESM.COM 20

75 v
|
|

-
Wi
Feature

Server
Sebection

| Bug Dats I Classifier I | Tata Redaction I
L C

p
LUser View
Uplosd Bug Asviga Developer
Rt‘pﬁl‘

I Testance Selection |

New Bug I

Fig. 1. Block Diagram

maintenance efforts in triaging and fixing bugs. In order to
identify such duplicates accurately, in this paper we propose
a retrieval function (REP) to measure the similarity between
two bug reports. It fully utilizes the information available in a
bug report including not only the similarity of textual content
in summary and description fields, but also similarity of non-
textual fields such as product, component, version, etc.

Experiments with a New Boosting Algorithm [3], from this
paper we refer: In an earlier paper, we introduced a new boost-
ing algorithm called AdaBoost which, theoretically, can be
used to significantly reduce the error of any learning algorithm
that consistently generates classifiers whose performance is
a little better than random guessing. We also introduced the
related notion of a pseudo-loss, which is a method for forcing
a learning algorithm of multi-label concepts to concentrate
on the labels that are hardest to discriminate. In this paper,
we describe experiments we carried out to assess how well
AdaBoost with and without pseudo-loss, performs on real
learning problems. We performed two sets of experiments. The
first set compared boosting to Breiman’s bagging method when
used to aggregate various classifiers (including decision trees
and single attribute value tests). We compared the performance
of the two methods on a collection of machine-learning
benchmarks. In the second set of experiments, we studied
in more detail the performance of boosting using a nearest-
neighbour classifier on an OCR problem.

Finding Bugs in Web Applications Using Dynamic Test
Generation and Explicit-State Model Checking [4], from this
paper we refer: Web script crashes and malformed dynamically
generated web pages are common errors, and they seriously
impact the usability of Web applications. Current tools for
webpage validation cannot handle the dynamically generated
pages that are ubiquitous on today’s Internet. We present
a dynamic test generation technique for the domain of dy-
namic Web applications. The technique utilizes both combined
concrete and symbolic execution and explicit-state model
checking. The technique generates tests automatically, runs the
tests capturing logical constraints on inputs, and minimizes the
conditions on the inputs to failing tests so that the resulting
bug reports are small and useful in finding and fixing the
underlying faults. Our tool Apollo implements the technique
for the PHP programming language. Apollo generates test
inputs for a Web application, monitors the application for

crashes, and validates that the output conforms to the HTML
specification. This paper presents Apollo’s algorithms and
implementation, and an experimental evaluation that revealed
673 faults in six PHP Web applications.

Information Needs in Bug Reports: Improving Cooperation
between Developers and Users [5], from this paper we refer:
For many software projects, bug tracking systems play a
central role in supporting collaboration between the developers
and the users of the software. To better understand this
collaboration and how tool support can be improved, we have
quantitatively and qualitatively analysed the questions asked
in a sample of 600 bug reports from the MOZILLA and
ECLIPSE projects. We categorized the questions and analysed
response rates and times by category and project. Our results
show that the role of users goes beyond simply reporting
bugs: their active and ongoing participation is important for
making progress on the bugs they report. Based on the results,
we suggest four ways in which bug tracking systems can be
improved.

Efficient Greedy Feature Selection for Unsupervised Learn-
ing [6], from this paper we refer: Reducing the dimensionality
of the data has been a challenging task in data mining
and machine learningapplications. In these applications, the
existence of irrelevant and redundant features negatively the
efficiency and effectiveness of different learning algorithms.
Feature selection is one of the dimension reduction techniques
which has been used to allow a better understanding of data
and improve the performance of other learning tasks. Although
the selection of relevant features has been extensively studied
in supervised learning, feature selection with the absence of
class labels is still challenging task. This paper proposes
a novel method for unsupervised feature selection, which
efficiently selects features in a greedy manner. The paper is
an effective criterion for unsupervised feature selection which
measures the reconstruction error of the data matrix based
on the selected subset of features. The paper then presents
a novel algorithm for greedily minimizing the reconstruction
error based on the features selected so far.

Another Move Toward the Minimum Consistent Subset: A
Tabu Search Approach to the Condensed Nearest Neighbour
Rule [7], from this paper we refer: This paper presents a new
approach to the selection of prototypes for the nearest neighbor
rule which aims at obtaining an optimal or close-to-optimal
solution. The problem is stated as a constrained optimization
problem using the concept of consistency. In this context,
the proposed method uses tabu search in the space of all
possible subsets. Comparative experiments have been carried
out using both synthetic and real data in which the algorithm
has demonstrated its superiority over alternative approaches.
The results obtained suggest that the tabu search condensing
algorithm offers a very good trade-off between computational
burden and the optimality of the prototypes selected.

Towards Graphical Models for Text Processing [8], from
this paper we refer: The rapid proliferation of the World Wide
Web has increased the importance and prevalence of text as
a medium for dissemination of information. A variety of text
mining and management algorithms have been developed in
recent years such as clustering, classification, and indexing

INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING, SCIENCE AND MANAGEMENT, VOL. 1, NO. 6, JUNE 2018, WWW.IJRESM.COM 21

and similarity search. Almost all these applications use the
wellknown vector-space model for text representation and
analysis. While the vector-space model has proven itself to be
an effective and efficient representation for mining purposes,
it does not preserve information about the ordering of the
words in the representation. In this paper, we will introduce
the concept of distance graph representations of text data.
Such representations preserve information about the relative
ordering and distance between the words in the graphs, and
provide a much richer representation in terms of sentence
structure of the underlying data. Recent advances in graph
mining and hardware capabilities of modern computers enable
us to process more complex representations of text. We will
see that such an approach has clear advantages from a qualita-
tive perspective. This approach enables knowledge discovery
from text which is not possible with the use of a pure vector-
space representation, because it loses much less information
about the ordering of the underlying words.

The Design of Bug Fixes [9], from this paper we refer:
When software engineers fix bugs, they may have several
options as to how to fix those bugs. Which fix they choose
has many implications, both for practitioners and researchers?
What is the risk of introducing other bugs during the fix?
Is the bug fix in the same code that caused the bug? Is the
change fixing the cause or just covering a symptom? In this
paper, we investigate alternative fixes to bugs and present an
empirical study of how engineers make design choices about
how to fix bugs. Based on qualitative interviews with 40
engineers working on variety of products, data from 6 bug
triage meetings, and a survey filled out by 326 engineers, we
found a number of factors, many of them non-technical, that
influence how bugs are fixed, such as how close to release the
software is. We also discuss several implications for research
and practice, including ways to make bug prediction and
localization more accurate.

V. PROPOSED SYSTEM ARCHITECTURE

The primary contributions of this paper are as follows: 1)
We present the problem of data reduction for bug triage. This
problem aims to augment the data set of bug triage in two
aspects, namely a) to simultaneously reduce the scales of the
bug dimension and the word dimension and b) to improve
the accuracy of bug triage. 2) We propose a combination
approach to addressing the problem of data reduction. This can
be viewed as an application of instance selection and feature
selection in bug repositories. 3) We build a binary classifier
to predict the order of applying instance selection and feature
selection. 4) To our knowledge, the order of applying instance
selection and feature selection has not been investigated in
related domains. This paper is an extension of our previous
work. In this extension, we add new attributes extracted from
bug data sets, prediction for reduction orders, and experiment
son four instance selection algorithms, four feature selection
algorithms, and their combinations In this paper, we address
the problem of data reduction for bug triage, i.e., how to reduce
the bug data to save the labor cost of developers and improve
the quality to facilitate the process of bug triage. From the

consideration of all above points we conclude that Bug triage
is an expensive step of software maintenance in both labour
cost and time cost. In this paper, we combine feature selection
with instance selection to reduce the scale of bug data sets as
well as improve the data quality. To determine the order of
applying instance selection and feature selection for a new bug
data set, we extract attributes of each bug data set and train a
predictive model based on historical data sets. We empirically
investigate the data reduction for bug triage in bug repositories
of two large open source projects, namely Eclipse and Mozilla.
Our work provides an approach to leveraging techniques on
data processing to form reduced and high-quality bug data
in software development and maintenance. In future work,
we plan on improving the results of data reduction in bug
triage to explore how to prepare a high quality bug data set
and tackle a domain specific software task. For predicting
reduction orders, we plan to pay efforts to find out the potential
relationship between the attributes of bug data sets and the
reduction orders.

VI. CONCLUSION

Bug triage is a costly step of software maintenance in
both labor cost and time cost. The proposed system combines
the feature selection algorithm (FS) with instance selection
algorithm (IS) in order to reduce the scale of bug data sets
as well as improve the data quality.A comparative analysis of
popular techniques used for bug triaging has been conducted.
We proposed bug assignment approaches using time decay
and parameter prioritization. The experimental result shows
that both time based knowledge decay and parameter prior-
itization helps in more precise developer recommendation.
We proposed NRFixer, a prediction model to predict the
fixability of bug reports marked as NR. In the future, we first
plan to integrate the parameter prioritization model with time
decay model. Second, we plan to evaluate the effectiveness of
proposed bug report assignment techniques for NR bugs that
are predicted as fixable by NR fixer.

REFERENCES

[11 Y. Fu, X. Zhu and B. Li, “A survey on Instance Selection for Active
Learning,” in Knowledge and Information Systems, vol. 35, no. 2, pp.
249-283, May 2013.

[2] C. Sun, D. Lo, S. C. Khoo and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), Lawrence,
KS, 2011, pp. 253-262.

[3] Y. Freund and R. E. Schapire, “Experiments with a New Boosting
Algorithm,” in Proceeding ICML’96 Proceedings of the Thirteenth Inter-
national Conference on International Conference on Machine Learning,
Bari, Italy, pp. 148-156.

[4] S. Artzi et al., “Finding Bugs in Web Applications Using Dynamic Test
Generation and Explicit-State Model Checking,” in I[EEE Transactions on
Software Engineering, vol. 36, no. 4, pp. 474-494, July-Aug. 2010.

[5] S. Breu, R. Premraj, J. Sillito and T. Zimmermann, “Information Needs
in Bug Reports: Improving Cooperation between Developers and Users,”
in CSCW ’10 Proceedings of the 2010 ACM conference on Computer
supported cooperative work, Savannah, Georgia, USA, 2010, pp. 301-
310.

[6] A. K. Farahat, A. Ghodsi and M. S. Kamel, “Efficient Greedy Feature
Selection for Unsupervised Learning,” in Knowledge and Information
Systems, vol. 35, no. 2, pp. 285-310, May 2013.

INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING, SCIENCE AND MANAGEMENT, VOL. 1, NO. 6, JUNE 2018, WWW.IJRESM.COM

(71

(8]

V. Cerveron and F. J. Ferri, “Another move toward the minimum con-
sistent subset: a tabu search approach to the condensed nearest neighbor
rule,” in IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 31, no. 3, pp. 408-413, Jun 2001.

C. C. Aggarwal and P. Zhao, “Towards Graphical Models for Text
Processing,” in Knowledge and Information Systems, vol. 36, no. 1, pp.
1-21, June 2013.

22

