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Abstract— The design of an architecture for an integrated 

digital processor requires attention to details of processing 

algorithms. Even a simple electronic gadget consists of a giga bytes 

of software which requires services both in terms of hardware and 

software. Many architecture designs are proposed to solve current 

requirements in processor industry especially in control unit of 

processors. Current architectures focus on centralized control 

unit which directly reduces reliability of that unit. Today’s VLSI 

industry had grown to such a level where billion of transistors are 

placed on a 1cm2 silicon wafer. This causes increase in current 

density as well as large power dissipation, which greatly affects 

the reliability of these units. At the same time, reliability of future 

processors is threatened by the growing fragility of individual 

components. Large scale studies of have already shown that 

existing processors are susceptible to error rates that are orders 

of magnitude higher than previously assumed. Current 

architectures focus on delivering high performance at low cost; 

lifetime device reliability is a secondary concern. Hence there is a 

need for an architecture which enhances the reliability as well as 

performance. 

 

Index Terms— BSU, CMP, crossbar, ISA, microarchitecture, 

multicore, pipelining, single-point-fault, TMR, viper 

I. INTRODUCTION 

Traditional solutions to enhance performance are by direct 

use of multiple cores, which is less power efficient and also not 

considered the reliability concerns. 

As the new trend where the real world is expecting 

performance as well as reliability, the in-order core solution is 

not fulfilled the requirements since it is more susceptible to 

more hardware faults. To cope with these hardware faults and 

to increase reliability, bullet-proof and stage-line architecture 

are proposed. In these architecture, the dedicated direct link 

between the modules which come in pipeline flow. These 

modules are bound by a crossbar-a reliable communication 

network, which establishes a path for both control and data. 

Because of this flexible link between modules of pipeline, 

effective utilization of hardware modules is achieved. Again 

the reliability is enhanced at a single core level but still 

communication between multiple core remains hardwired. 

Again the crossbar between modules also hardwired and has 

centralized control unit contributing to degrade in reliability. 

In Fig. 1, the reliability and performance of such solutions 

are compared for throughput of a chip comprised of about 2 

billion transistors as a function of the number of hardware 

failures in the device. A chip of this size could fit 128 standard 

in-order cores, 42 in-order cores in a TMR configuration, 27 

bulletproof pipelines or 30 Stage Net pipelines (the latter two 

having a fault-free throughput equivalent to about four in-order 

cores). It demonstrates that the maximum performance of the 

unprotected design decreases steeply as the number of faults 

increases, while the performance of TMR is extremely poor 

throughout. The two hardened micro architectures can better 

cope with hardware failures, but as they rely on centralized 

logic, they still suffer significant performance degradations 

when subjected to a large number of faults. 

 

 
 

Fig. 1.  Statistics showing reliability and performance as a function of 

faults. 

 

At this end, we introduce Viper, a new architecture that 

decouples the functionality of a pipeline and its control logic. 

By removing the dependencies between all parts of a core, it 

becomes possible to build a highly redundant, error-resilient 

design that contains no single point of failure. Specifically, 

viper provides following contributions: 

1) Viper provides a novel decoupled architecture that can 

reconfigure itself around hardware errors.  

2) It proposes a new execution paradigm where instructions are 

split into bundles, each with a list of underlying tasks it needs 

to complete. The decoupled hardware components then 

complete these tasks. 

3) Viper has a fully distributed control logic design, which 

allows performance to degrade gracefully without any single 

point of failure in the system. 

Viper outperforms other reliable designs and surpasses the 

performance of a CMP built from in-order cores after only 160 

faults in a two billion transistor chip 

II. VIPER HARDWARE ORGANIZATION 

Viper is based on a distributed execution engine that is 

dynamically configured to route instructions towards 

functioning hardware components. This allows Viper to 

degrade performance gracefully when subjected to hardware 

errors. 

Viper is a service-oriented micro architecture, where 

instructions are presented as customers that use hardware 

components to complete an ordered sequence of services. For 

instance, a sequence of such services for a simple add 

instruction - add %al, [%ebx] - could be: fetch/decode 

instruction, retrieve value from registers, load memory value, 

add two operands, and write the result back to a register and, 

“compute the address of the next instruction. From Viper’s 

perspective, an ISA consists of the set of services required by 

its instructions. Instead of pushing instructions through paths 

defined at design time, as classic architectures do, Viper relies 

on a flexible fabric composed of hardware clusters. These 
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clusters are loosely coupled via a reliable communication 

network to form a dynamic execution engine. 

Viper can be partitioned into two parts: 

1. A sea of redundant hardware clusters: hardware functional 

units connected through a reliable communication medium. 

Each cluster can perform some of the services required to 

execute instructions in the ISA. 

2. Bundle Scheduling Units: memory elements that contain 

the state of in-flight instruction bundles and store the data 

necessary to schedule and organize the hardware clusters that 

form a virtual pipeline. A live BSU entry does not contain 

instructions or operands, but only the information required to 

control the bundle’s execution. 

 

 
 

Fig. 2.  Viper components and its organization. Every module is interlinked 

through crossbar. Some of the clusters, such as the ones capable of fetching 

instructions, have special connections to external hardware elements 

The Fig. 2 presents a simple Viper design organized in a 

mesh, where each colored service is replicated in multiple 

identical clusters. BSUs are connected to the sea of clusters 

through a crossbar, which allows each BSU to interact with all 

clusters in the execution engine. Clusters that need access to 

external modules are connected to them through dedicated 

links. For instance, clusters capable of fetching instructions are 

directly connected to the instruction cache, and the register file 

and load/store queues are placed near clusters that need fast 

access to these units. Finally, clusters that support the write 

memory operations service are connected to the load/store 

queue to allow stored values to be written to memory once the 

related bundles are committed. 

Note that, depending on the layout of the hardware, such 

special links might not have uniform communication latency. 

The easiest way to prepare your document is to use this 

document as a template and simply type your text into it. 

III. VIPER EXECUTION 

For understanding how viper executes an instruction in its 

regular operation we use the design provides only six services: 

fetch, decode, rename, execute, commit, and write-back and 

memory operations in our succeeding example. Viper’s 

operation are be grouped as follows: 

1) Bundle Creation 

2) Virtual Pipeline Generation 

    2.1)  Service Proposal 

    2.2)  Service Assignment 

    2.3)  Configuring the Sea of Clusters 

3) Operand Tags Generation 

4) Bundle Termination 

     4.1)  Memory Operations 

     4.2) Managing Bundle Sequence 

 

1) Bundle Creation 

 

In this example, we assume that an instruction bundle (with 

BID 5) has already successfully determined the starting address 

of the next bundle. Therefore, program execution proceeds to 

the next basic block, which starts at address 0x4013d2. Since a 

not-taken conditional branch concludes bundle 5, the NPC 
(Next Program Counter) field of its BSU stores the (correctly) 

predicted location, as shown in Figure 3.b. Because the PC of 

the next bundle is available, but no BSU has been assigned to 

it (the field Next BSU is empty), bundle 5s BSU assigns an 

available BSU entry to the following bundle, as shown in Fig. 

3(c). When a bundle is first assigned to a BSU entry, the only 

two pieces of information available are: 1) the BSU entry 

number of the previous bundle and 2) the PC of the first 

instruction of the bundle. The former is needed because live 

BSU entries form a chain of in-flight bundles. This allows the 

system to track correct control flow and to commit bundles in 

order. The latter information is needed by the fetch component, 

as we discuss shortly. Since a new set of clusters is needed to 

form the virtual pipeline for the new bundle, the newly assigned 

BSU marks all required services as unassigned. 

 

2) Virtual Pipeline Generation 

 

Once the bundles are formed, each bundle is associated to a 

BSU and a new BSU entry assigned to control the execution of 

a new bundle is in charge of constructing a virtual pipeline 

capable of providing at least all services required by its 

instructions. Virtual pipeline generation consists of selecting 

which hardware clusters will collaborate in executing a bundle. 

Since using a centralized unit to perform this procedure would 

constitute a single point of failure in the system, Viper adopts 

a distributed mechanism to generate virtual pipelines. This 

negotiation mechanism is based on service proposals: clusters 

independently volunteer to execute services for a bundle in a 

live BSU. Similar to traditional processors, a path is needed for 

flow of both data and control during execution of the bundle. 

Hence we need to form tis path which is referred as Virtual 

pipeline in viper.  

 

2.1) service proposal 

  

In this stage, the new BSU which is just created is going to 

flood the requirement of resources on the cross bar network. 

The resources which are available for providing service will 

reply back to the BSU. Depending on the routing and 

placement of clusters from BSU, the proposal message may 

suffer from different latency in each path and hence reply also 

arrive at different time instant. For instance, in Fig. 3(d) we 

show two clusters, F0 and W2, proposing their services to the 

bundle with BID 6. This may occur because clusters initiate the 

proposal negotiation independently, and therefore a BSU might 

receive multiple service proposals at the same time. 

As soon as the cluster replies to BSU saying I’m ready to 

provide service, it changes its local status from idle to pending 

and waits for an award message from the BSU. A service 

proposal is not binding until a BSU notifies the proposing 
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Fig. 3 (a)  Virtual pipeline creation process for the second bundle in frame b) The BSU for bundle 5 creates the next bundle when the address of the following 

basic block becomes available in next PC field. c) The new bundle is created in an available BSU. d) Functioning and available hardware clusters in the system 

propose their services to the new bundle. e) Cluster F0 is selected to become part of the new virtual pipeline. f) A subsequent proposal from D1 is accepted. 

Clusters are also notified by the BSU about the other clusters composing the virtual pipeline. g) The clusters are configured to establish communication paths. h) 

After the configuration, a virtual pipeline is formed. i) Finally, as F0 detects the last instruction in the bundle, it updates the BSUs NPC field, which allows the 

next bundle to begin 

 

party; if no service award is received within a timeout period, 

the cluster considers its proposal rejected, and the service 

negotiation sequence is re-initiated. 

 

2.2) Service assignment 

 

Here once BSU receives the reply from clusters it has to 

provide the details of the bundle to the clusters whose proposal 

was accepted. Explaining with example, when BSU 2 chooses 

F0 to be included in its virtual pipeline, it records that this 

cluster will accomplish the fetch service for its bundle. Besides 

the notification that a proposal has been accepted, confirmation 

messages carry information needed by the clusters to perform 

their service. Such information consists of either data fields 

directly stored in the BSU or routing information needed to 

retrieve data from other clusters. The former situation is shown 

in Fig. 3(e) as the BSU sends a notification to F0 that its 

proposal was accepted, it also forwards to it the first memory 

address of the bundle with BID 6. 

 

2.3) configure the sea of cluster 

 

Once BSU keeps on filling the resource entries, it should 

establish connection between the hardware clusters that going 

to take part in that virtual cluster. In Figure 3.f we show the 

BSU awarding it’s decode service to D1. This cluster is told 

which cluster will fetch the instruction bundle, in this case F0. 

D1 then establishes a connection with F0 through the reliable 

network, as shown in Fig. 3(g). 

All services are similarly assigned in an ordered fashion and, 

as the BSU service list is filled, the sea of cluster is configured 

to generate a complete virtual pipeline through the network, as 

shown in Fig. 3(h). Viper can concurrently configure several 

independent active virtual pipelines, since the BSUs and 

execution clusters operate autonomously. Multiple virtual 

pipelines can work on a single program (as shown in the 

example), or can simultaneously execute multiple threads. 

 

3) Operand Tags Generation 

 

To resolve the data dependency between bundles, and 

enhance efficient parallel processing viper provides a tag 

generation mechanism. Each live BSU entry stores three tag 

versions for all the architectural registers in the ISA: input, 

generated and output. Compared to classical renaming schemes 

based on mapping architectural to physical registers, the input 

and output tags can be seen as two snapshots of a classic 
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rename table: the first before and the second after the execution 

of the entire bundle.  

 

4)  Bundle Termination 

 

Once the execution of a bundle is completed, BSU going to 

release all resources that are currently in its virtual pipeline. 

The term completion of execution of a bundle” is nothing but 

1) all clusters assigned to its virtual pipeline finish servicing its 

instructions; 2) all preceding bundles belonging to the same 

thread have already terminated. 

 

4.1)  Memory Operations 

 

Once required conditions are met for bundle termination, the 

next phase is to detach the load store queue of that BSU entry 

and making it free so that other tasks can make use of that 

memory location. Since multiple bundles from the same 

program can execute in parallel, the load and store queues 

might receive misordered memory requests. This could cause a 

problem, as the forwarding logic in the load and store buffer 

might mistakenly: 1) forward to load instructions values 

produced by later stores or 2) receive a sequence of stores that 

does not reflect the program order. As the memory queue 

cannot dynamically address these issues, they are resolved by 

clearing all entries in the thread’s load and store queue and 

canceling the execution of the conflicting bundles. In order to 

ensure forward progress, the oldest canceled bundle replays its 

execution starting from its original PC but is forced to include 

only one instruction. 

 

 4.2) Managing Bundle Sequence 

 

Each live BSU maintains starting addresses for both its 

bundle and the one immediately following. This latter value is 

provided by the clusters performing the fetch service, as they 

can recognize the end of a bundle at control flow instruction 

such as jump. Such clusters communicate the starting address 

of the next bundle back to their BSU, as shown in Fig. 3(g): 

even before bundle 6 terminates, F0 can predict the starting 

address of the following basic block - 0x4013fc in our example 

- updating the NPC field of the BSU with this address. With 

this, the BSU can generate a new bundle (in our example with 

BID 7), and continue program execution. 

IV. HANDLING EXCEPTIONAL EVENTS 

 

Viper provide a special care to handle the exceptional events 

such as memory misprediction, trap flag generation and 

runtime failures. Most processors require several cycles to 

resolve the target of instructions that modify control flow. This 

delay might cause the system to start processing instructions 

from an incorrect execution path: these instructions need to be 

flushed as soon as a control flow misprediction is detected. 

Viper does same thing by releasing the allocated resources and 

deleting that BSU entry only after it gets confirmation from all 

clusters that are released. Similarly Interrupts, exceptions, 

traps, and page faults must be handled with particular attention. 

Without modifying the bundle termination procedure, these 

events can cause the system to deadlock. For instance, an 

instruction triggering a page fault might prevent its entire 

bundle from terminating. To overcome this issue, a bundle 

affected by one or more of these special events is canceled and 

split in multiple bundles, each including a single instruction 

from the original basic block. The bundle containing the faulty 

instruction will then steer program execution to the correct 

software handler. Other cases where bundles must contain only 

a single instruction are system calls and uncacheable. 

Runtime failures: to handle these faults, viper monitors a 

memory accesses. As Viper’s goal is to maximize processor 

availability in the face of hardware faults, we assume that other 

mechanisms will detect faulty hardware components. In our 

failure model, we assume that a hardware component detected 

as faulty can be disabled. Compared to previous solutions, our 

design provides an additional advantage to online testing, as it 

does not require interrupting program execution. A cluster 

detected as faulty for a particular service is disabled for that 

service, and it will not propose to complete that service for any 

BSU. 

V. A SOLUTION REDUCE FULL FLUSH 

As stated earlier Bundles are the larger collection of 

instructions to which a BSU entry is created. In viper 

architecture, these are treated as customers who require 

services to complete the execution of the instructions present 

in that bundle. Every BSU entry contains a PC (Program 

counter-Holds the starting address of that bundle) and NPC 

(Next program counter-Holds the starting address of the next 

bundle) field which is communicated to all h/w clusters which 

are taking part in the execution of that bundle i.e. the cluster 

present in virtual pipeline of that BSU entry. Here an 

intelligence is required to predict or estimate the value of PC 

and NPC fields. 

The prediction of the starting address of bundle is directly 

depends on the ISA of the processor being built. If we consider 

a simple GPP, there are specific instructions that alter the 

sequential flow of program execution such as conditional and 

unconditional branch instructions, software interrupts, special 

Hardware service calls (DOS) etc. Unconditional jump 

instructions are straightforward and hence it is easier to predict 

the next bundle address. But in case of conditional jump there 

is always a 50% probability of branch misprediction. This is 

because the target address for branching is known only after 

the specified condition is checked.  

If we follow the simple bundle creation on the basis of 

branching instruction, the viper is going to flush all its current 

entries, and reinitiates bundle creation from the branched 

address. Again the assumed way to create bundles is sequential, 

once misprediction happens viper flushes complete succeeding 

BSU neglecting whatever the state of those BSU entry. 

 

 
Fig. 4.  Adding fields to BSU entry 

Here we present a simple solution by the concept of master 

slave concept. In our 1st solution we are required a fetch and 
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decode unit dedicated for this purpose. This is because the 

address of the next instruction can be known only after 

decoding of the current instruction. 

To implement this concept we are adding two new fields in a 

BSU entry. We are going to name them as M/S and Slave 

count.  

 

M/S = 0-for Master and contains BSU id of master for slave 

BSU entry. 

SC   =Assume 2 bit. Hence at most of 4 slaves. 

 

With the addition of these new fields, we are going to alter 

the NPC field by extending it have two addresses, with this we 

are ready to explain our solution.  

 

The following pseudo-code gives the flow of our algorithm 

for bundle creation. 

 

 

Fetch_instructions_from_I$( ); 

Decode( ); 

If (Decoded_inst== branching_instru) 

 If(Branching==unconditional Branch) 

Provide_NPC_value( ); 

 Else   

Provide_possible_NPC_value(); /*here NPC holds 2 

addresses for both true and false case*/ 

 If(only_default_master_is_alive)/*default master=0 

the boot BSU*/ 

Create_master_bsu(true); /*here after completion of 

master bsu, we continue to create slave bsu’ s until there is 

need for another master bsu requirement and SC is reached 

its maximum*/ 

  Create_master_bsu(false); 

 Else wait_for_flush(make_other_master_to_slave ); 

Loop_back( ); 

 

 

Here we created two bundles for both true and false branch. 

Once branching is estimated the BSU of branched entry details 

are broadcasted and hence the other master and its slave BSU 

entries are flushed hence leaving only one master active. Again 

the remaining master becomes the slave of default BSU and 

makes its slave to same. 

With this we can avoid complete flushing and reduce the 

latency in execution. 

To improve the above concept we can make use of internal 

cluster to perform the same task. Since virtual pipeline creation 

is sequential, once fetch and decode unit is assigned to a BSU, 

they have to wait until all other clusters are ready for execution 

of that bundle. During that time, the dedicated unit is made to 

communicate through the crossbar to these units and hence 

assign the task of branch prediction. By proving special 

handshaking and dedicated path, this bundling process can 

accelerated to reduce memory-miss latency in processors. 

VI. AN APPLICATION 

LSI Axxia-Communication Processors family is intended for 

networking and datacenters (cloud). These processor family 

utilizes Virtual Pipeline® technology for High performance 

fast data path processing (IPv6, IPSec, etc.) and offload for up 

to 20 Gbps performance. 

 

 
 

Fig. 5.   Axxia platform for networking 

In Fig.5, it is shown that where the concept of virtual 

pipelining is utilized. The technology is implemented for 

effective binding of the service engines which are assigned 

once services are requested. Here the main purpose is to 

accelerate the data path by providing only requested services. 

VII. CONCLUSION 

In today’s world everyone looking for an reliable, high 

performance modules to enhance the product lifetime. Since 

viper best suits these situation its application is numerous. 

Since it provides a flexible reconfigurable and dynamic 

resource allocation, this can be used to eliminate redundant 

hardware in current designs and hence it helps to save space as 

well as power. Since it is fully distributed control logic it 

eliminates the single-point-of-failure and adds reliability. A 

program can successfully finish as long as its required services 

can be executed by a dynamic collection of the available 

components. By construction itself, viper enhances fault 

immunity while maintaining high performance.  

Future work will include development of fast and reliable 

protocol for crossbar network to reduce IPC delay. Viper’s 

performance could be improved by developing more efficient 

and faster techniques for building virtual pipelines and 

handling exceptions. Finally, by application of Viper’s flexible 

execution engine to both gpp and dsp one can get more features 

from the same cost. 
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