
International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-2, February 2018

1

Virtual Pipelining- A Reliable Processor Architecture
Rakesh1, M.L. Sudheer2

1Student, Dept. of Electronics and Communications, University Vishveswaraya College of Engg., Bangalore, India
2Professor, Dept. of Electronics and Communications, University Vishveswaraya College of Engg., Bangalore, India

Abstract— The design of an architecture for an integrated

digital processor requires attention to details of processing

algorithms. Even a simple electronic gadget consists of a giga bytes

of software which requires services both in terms of hardware and

software. Many architecture designs are proposed to solve current

requirements in processor industry especially in control unit of

processors. Current architectures focus on centralized control

unit which directly reduces reliability of that unit. Today’s VLSI

industry had grown to such a level where billion of transistors are

placed on a 1cm2 silicon wafer. This causes increase in current

density as well as large power dissipation, which greatly affects

the reliability of these units. At the same time, reliability of future

processors is threatened by the growing fragility of individual

components. Large scale studies of have already shown that

existing processors are susceptible to error rates that are orders

of magnitude higher than previously assumed. Current

architectures focus on delivering high performance at low cost;

lifetime device reliability is a secondary concern. Hence there is a

need for an architecture which enhances the reliability as well as

performance.

Index Terms— BSU, CMP, crossbar, ISA, microarchitecture,

multicore, pipelining, single-point-fault, TMR, viper

I. INTRODUCTION

Traditional solutions to enhance performance are by direct

use of multiple cores, which is less power efficient and also not

considered the reliability concerns.

As the new trend where the real world is expecting

performance as well as reliability, the in-order core solution is

not fulfilled the requirements since it is more susceptible to

more hardware faults. To cope with these hardware faults and

to increase reliability, bullet-proof and stage-line architecture

are proposed. In these architecture, the dedicated direct link

between the modules which come in pipeline flow. These

modules are bound by a crossbar-a reliable communication

network, which establishes a path for both control and data.

Because of this flexible link between modules of pipeline,

effective utilization of hardware modules is achieved. Again

the reliability is enhanced at a single core level but still

communication between multiple core remains hardwired.

Again the crossbar between modules also hardwired and has

centralized control unit contributing to degrade in reliability.

In Fig. 1, the reliability and performance of such solutions

are compared for throughput of a chip comprised of about 2

billion transistors as a function of the number of hardware

failures in the device. A chip of this size could fit 128 standard

in-order cores, 42 in-order cores in a TMR configuration, 27

bulletproof pipelines or 30 Stage Net pipelines (the latter two

having a fault-free throughput equivalent to about four in-order

cores). It demonstrates that the maximum performance of the

unprotected design decreases steeply as the number of faults

increases, while the performance of TMR is extremely poor

throughout. The two hardened micro architectures can better

cope with hardware failures, but as they rely on centralized

logic, they still suffer significant performance degradations

when subjected to a large number of faults.

Fig. 1. Statistics showing reliability and performance as a function of

faults.

At this end, we introduce Viper, a new architecture that

decouples the functionality of a pipeline and its control logic.

By removing the dependencies between all parts of a core, it

becomes possible to build a highly redundant, error-resilient

design that contains no single point of failure. Specifically,

viper provides following contributions:

1) Viper provides a novel decoupled architecture that can

reconfigure itself around hardware errors.

2) It proposes a new execution paradigm where instructions are

split into bundles, each with a list of underlying tasks it needs

to complete. The decoupled hardware components then

complete these tasks.

3) Viper has a fully distributed control logic design, which

allows performance to degrade gracefully without any single

point of failure in the system.

Viper outperforms other reliable designs and surpasses the

performance of a CMP built from in-order cores after only 160

faults in a two billion transistor chip

II. VIPER HARDWARE ORGANIZATION

Viper is based on a distributed execution engine that is

dynamically configured to route instructions towards

functioning hardware components. This allows Viper to

degrade performance gracefully when subjected to hardware

errors.

Viper is a service-oriented micro architecture, where

instructions are presented as customers that use hardware

components to complete an ordered sequence of services. For

instance, a sequence of such services for a simple add

instruction - add %al, [%ebx] - could be: fetch/decode

instruction, retrieve value from registers, load memory value,

add two operands, and write the result back to a register and,

“compute the address of the next instruction. From Viper’s

perspective, an ISA consists of the set of services required by

its instructions. Instead of pushing instructions through paths

defined at design time, as classic architectures do, Viper relies

on a flexible fabric composed of hardware clusters. These

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-2, February 2018

2

clusters are loosely coupled via a reliable communication

network to form a dynamic execution engine.

Viper can be partitioned into two parts:

1. A sea of redundant hardware clusters: hardware functional

units connected through a reliable communication medium.

Each cluster can perform some of the services required to

execute instructions in the ISA.

2. Bundle Scheduling Units: memory elements that contain

the state of in-flight instruction bundles and store the data

necessary to schedule and organize the hardware clusters that

form a virtual pipeline. A live BSU entry does not contain

instructions or operands, but only the information required to

control the bundle’s execution.

Fig. 2. Viper components and its organization. Every module is interlinked

through crossbar. Some of the clusters, such as the ones capable of fetching

instructions, have special connections to external hardware elements

The Fig. 2 presents a simple Viper design organized in a

mesh, where each colored service is replicated in multiple

identical clusters. BSUs are connected to the sea of clusters

through a crossbar, which allows each BSU to interact with all

clusters in the execution engine. Clusters that need access to

external modules are connected to them through dedicated

links. For instance, clusters capable of fetching instructions are

directly connected to the instruction cache, and the register file

and load/store queues are placed near clusters that need fast

access to these units. Finally, clusters that support the write

memory operations service are connected to the load/store

queue to allow stored values to be written to memory once the

related bundles are committed.

Note that, depending on the layout of the hardware, such

special links might not have uniform communication latency.

The easiest way to prepare your document is to use this

document as a template and simply type your text into it.

III. VIPER EXECUTION

For understanding how viper executes an instruction in its

regular operation we use the design provides only six services:

fetch, decode, rename, execute, commit, and write-back and

memory operations in our succeeding example. Viper’s

operation are be grouped as follows:

1) Bundle Creation

2) Virtual Pipeline Generation

 2.1) Service Proposal

 2.2) Service Assignment

 2.3) Configuring the Sea of Clusters

3) Operand Tags Generation

4) Bundle Termination

 4.1) Memory Operations

 4.2) Managing Bundle Sequence

1) Bundle Creation

In this example, we assume that an instruction bundle (with

BID 5) has already successfully determined the starting address

of the next bundle. Therefore, program execution proceeds to

the next basic block, which starts at address 0x4013d2. Since a

not-taken conditional branch concludes bundle 5, the NPC
(Next Program Counter) field of its BSU stores the (correctly)

predicted location, as shown in Figure 3.b. Because the PC of

the next bundle is available, but no BSU has been assigned to

it (the field Next BSU is empty), bundle 5s BSU assigns an

available BSU entry to the following bundle, as shown in Fig.

3(c). When a bundle is first assigned to a BSU entry, the only

two pieces of information available are: 1) the BSU entry

number of the previous bundle and 2) the PC of the first

instruction of the bundle. The former is needed because live

BSU entries form a chain of in-flight bundles. This allows the

system to track correct control flow and to commit bundles in

order. The latter information is needed by the fetch component,

as we discuss shortly. Since a new set of clusters is needed to

form the virtual pipeline for the new bundle, the newly assigned

BSU marks all required services as unassigned.

2) Virtual Pipeline Generation

Once the bundles are formed, each bundle is associated to a

BSU and a new BSU entry assigned to control the execution of

a new bundle is in charge of constructing a virtual pipeline

capable of providing at least all services required by its

instructions. Virtual pipeline generation consists of selecting

which hardware clusters will collaborate in executing a bundle.

Since using a centralized unit to perform this procedure would

constitute a single point of failure in the system, Viper adopts

a distributed mechanism to generate virtual pipelines. This

negotiation mechanism is based on service proposals: clusters

independently volunteer to execute services for a bundle in a

live BSU. Similar to traditional processors, a path is needed for

flow of both data and control during execution of the bundle.

Hence we need to form tis path which is referred as Virtual

pipeline in viper.

2.1) service proposal

In this stage, the new BSU which is just created is going to

flood the requirement of resources on the cross bar network.

The resources which are available for providing service will

reply back to the BSU. Depending on the routing and

placement of clusters from BSU, the proposal message may

suffer from different latency in each path and hence reply also

arrive at different time instant. For instance, in Fig. 3(d) we

show two clusters, F0 and W2, proposing their services to the

bundle with BID 6. This may occur because clusters initiate the

proposal negotiation independently, and therefore a BSU might

receive multiple service proposals at the same time.

As soon as the cluster replies to BSU saying I’m ready to

provide service, it changes its local status from idle to pending

and waits for an award message from the BSU. A service

proposal is not binding until a BSU notifies the proposing

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-2, February 2018

3

Fig. 3 (a) Virtual pipeline creation process for the second bundle in frame b) The BSU for bundle 5 creates the next bundle when the address of the following

basic block becomes available in next PC field. c) The new bundle is created in an available BSU. d) Functioning and available hardware clusters in the system

propose their services to the new bundle. e) Cluster F0 is selected to become part of the new virtual pipeline. f) A subsequent proposal from D1 is accepted.

Clusters are also notified by the BSU about the other clusters composing the virtual pipeline. g) The clusters are configured to establish communication paths. h)

After the configuration, a virtual pipeline is formed. i) Finally, as F0 detects the last instruction in the bundle, it updates the BSUs NPC field, which allows the

next bundle to begin

party; if no service award is received within a timeout period,

the cluster considers its proposal rejected, and the service

negotiation sequence is re-initiated.

2.2) Service assignment

Here once BSU receives the reply from clusters it has to

provide the details of the bundle to the clusters whose proposal

was accepted. Explaining with example, when BSU 2 chooses

F0 to be included in its virtual pipeline, it records that this

cluster will accomplish the fetch service for its bundle. Besides

the notification that a proposal has been accepted, confirmation

messages carry information needed by the clusters to perform

their service. Such information consists of either data fields

directly stored in the BSU or routing information needed to

retrieve data from other clusters. The former situation is shown

in Fig. 3(e) as the BSU sends a notification to F0 that its

proposal was accepted, it also forwards to it the first memory

address of the bundle with BID 6.

2.3) configure the sea of cluster

Once BSU keeps on filling the resource entries, it should

establish connection between the hardware clusters that going

to take part in that virtual cluster. In Figure 3.f we show the

BSU awarding it’s decode service to D1. This cluster is told

which cluster will fetch the instruction bundle, in this case F0.

D1 then establishes a connection with F0 through the reliable

network, as shown in Fig. 3(g).

All services are similarly assigned in an ordered fashion and,

as the BSU service list is filled, the sea of cluster is configured

to generate a complete virtual pipeline through the network, as

shown in Fig. 3(h). Viper can concurrently configure several

independent active virtual pipelines, since the BSUs and

execution clusters operate autonomously. Multiple virtual

pipelines can work on a single program (as shown in the

example), or can simultaneously execute multiple threads.

3) Operand Tags Generation

To resolve the data dependency between bundles, and

enhance efficient parallel processing viper provides a tag

generation mechanism. Each live BSU entry stores three tag

versions for all the architectural registers in the ISA: input,

generated and output. Compared to classical renaming schemes

based on mapping architectural to physical registers, the input

and output tags can be seen as two snapshots of a classic

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-2, February 2018

4

rename table: the first before and the second after the execution

of the entire bundle.

4) Bundle Termination

Once the execution of a bundle is completed, BSU going to

release all resources that are currently in its virtual pipeline.

The term completion of execution of a bundle” is nothing but

1) all clusters assigned to its virtual pipeline finish servicing its

instructions; 2) all preceding bundles belonging to the same

thread have already terminated.

4.1) Memory Operations

Once required conditions are met for bundle termination, the

next phase is to detach the load store queue of that BSU entry

and making it free so that other tasks can make use of that

memory location. Since multiple bundles from the same

program can execute in parallel, the load and store queues

might receive misordered memory requests. This could cause a

problem, as the forwarding logic in the load and store buffer

might mistakenly: 1) forward to load instructions values

produced by later stores or 2) receive a sequence of stores that

does not reflect the program order. As the memory queue

cannot dynamically address these issues, they are resolved by

clearing all entries in the thread’s load and store queue and

canceling the execution of the conflicting bundles. In order to

ensure forward progress, the oldest canceled bundle replays its

execution starting from its original PC but is forced to include

only one instruction.

 4.2) Managing Bundle Sequence

Each live BSU maintains starting addresses for both its

bundle and the one immediately following. This latter value is

provided by the clusters performing the fetch service, as they

can recognize the end of a bundle at control flow instruction

such as jump. Such clusters communicate the starting address

of the next bundle back to their BSU, as shown in Fig. 3(g):

even before bundle 6 terminates, F0 can predict the starting

address of the following basic block - 0x4013fc in our example

- updating the NPC field of the BSU with this address. With

this, the BSU can generate a new bundle (in our example with

BID 7), and continue program execution.

IV. HANDLING EXCEPTIONAL EVENTS

Viper provide a special care to handle the exceptional events

such as memory misprediction, trap flag generation and

runtime failures. Most processors require several cycles to

resolve the target of instructions that modify control flow. This

delay might cause the system to start processing instructions

from an incorrect execution path: these instructions need to be

flushed as soon as a control flow misprediction is detected.

Viper does same thing by releasing the allocated resources and

deleting that BSU entry only after it gets confirmation from all

clusters that are released. Similarly Interrupts, exceptions,

traps, and page faults must be handled with particular attention.

Without modifying the bundle termination procedure, these

events can cause the system to deadlock. For instance, an

instruction triggering a page fault might prevent its entire

bundle from terminating. To overcome this issue, a bundle

affected by one or more of these special events is canceled and

split in multiple bundles, each including a single instruction

from the original basic block. The bundle containing the faulty

instruction will then steer program execution to the correct

software handler. Other cases where bundles must contain only

a single instruction are system calls and uncacheable.

Runtime failures: to handle these faults, viper monitors a

memory accesses. As Viper’s goal is to maximize processor

availability in the face of hardware faults, we assume that other

mechanisms will detect faulty hardware components. In our

failure model, we assume that a hardware component detected

as faulty can be disabled. Compared to previous solutions, our

design provides an additional advantage to online testing, as it

does not require interrupting program execution. A cluster

detected as faulty for a particular service is disabled for that

service, and it will not propose to complete that service for any

BSU.

V. A SOLUTION REDUCE FULL FLUSH

As stated earlier Bundles are the larger collection of

instructions to which a BSU entry is created. In viper

architecture, these are treated as customers who require

services to complete the execution of the instructions present

in that bundle. Every BSU entry contains a PC (Program

counter-Holds the starting address of that bundle) and NPC

(Next program counter-Holds the starting address of the next

bundle) field which is communicated to all h/w clusters which

are taking part in the execution of that bundle i.e. the cluster

present in virtual pipeline of that BSU entry. Here an

intelligence is required to predict or estimate the value of PC

and NPC fields.

The prediction of the starting address of bundle is directly

depends on the ISA of the processor being built. If we consider

a simple GPP, there are specific instructions that alter the

sequential flow of program execution such as conditional and

unconditional branch instructions, software interrupts, special

Hardware service calls (DOS) etc. Unconditional jump

instructions are straightforward and hence it is easier to predict

the next bundle address. But in case of conditional jump there

is always a 50% probability of branch misprediction. This is

because the target address for branching is known only after

the specified condition is checked.

If we follow the simple bundle creation on the basis of

branching instruction, the viper is going to flush all its current

entries, and reinitiates bundle creation from the branched

address. Again the assumed way to create bundles is sequential,

once misprediction happens viper flushes complete succeeding

BSU neglecting whatever the state of those BSU entry.

Fig. 4. Adding fields to BSU entry

Here we present a simple solution by the concept of master

slave concept. In our 1st solution we are required a fetch and

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-2, February 2018

5

decode unit dedicated for this purpose. This is because the

address of the next instruction can be known only after

decoding of the current instruction.

To implement this concept we are adding two new fields in a

BSU entry. We are going to name them as M/S and Slave

count.

M/S = 0-for Master and contains BSU id of master for slave

BSU entry.

SC =Assume 2 bit. Hence at most of 4 slaves.

With the addition of these new fields, we are going to alter

the NPC field by extending it have two addresses, with this we

are ready to explain our solution.

The following pseudo-code gives the flow of our algorithm

for bundle creation.

Fetch_instructions_from_I$();

Decode();

If (Decoded_inst== branching_instru)

 If(Branching==unconditional Branch)

Provide_NPC_value();

 Else

Provide_possible_NPC_value(); /*here NPC holds 2

addresses for both true and false case*/

 If(only_default_master_is_alive)/*default master=0

the boot BSU*/

Create_master_bsu(true); /*here after completion of

master bsu, we continue to create slave bsu’ s until there is

need for another master bsu requirement and SC is reached

its maximum*/

 Create_master_bsu(false);

 Else wait_for_flush(make_other_master_to_slave);

Loop_back();

Here we created two bundles for both true and false branch.

Once branching is estimated the BSU of branched entry details

are broadcasted and hence the other master and its slave BSU

entries are flushed hence leaving only one master active. Again

the remaining master becomes the slave of default BSU and

makes its slave to same.

With this we can avoid complete flushing and reduce the

latency in execution.

To improve the above concept we can make use of internal

cluster to perform the same task. Since virtual pipeline creation

is sequential, once fetch and decode unit is assigned to a BSU,

they have to wait until all other clusters are ready for execution

of that bundle. During that time, the dedicated unit is made to

communicate through the crossbar to these units and hence

assign the task of branch prediction. By proving special

handshaking and dedicated path, this bundling process can

accelerated to reduce memory-miss latency in processors.

VI. AN APPLICATION

LSI Axxia-Communication Processors family is intended for

networking and datacenters (cloud). These processor family

utilizes Virtual Pipeline® technology for High performance

fast data path processing (IPv6, IPSec, etc.) and offload for up

to 20 Gbps performance.

Fig. 5. Axxia platform for networking

In Fig.5, it is shown that where the concept of virtual

pipelining is utilized. The technology is implemented for

effective binding of the service engines which are assigned

once services are requested. Here the main purpose is to

accelerate the data path by providing only requested services.

VII. CONCLUSION

In today’s world everyone looking for an reliable, high

performance modules to enhance the product lifetime. Since

viper best suits these situation its application is numerous.

Since it provides a flexible reconfigurable and dynamic

resource allocation, this can be used to eliminate redundant

hardware in current designs and hence it helps to save space as

well as power. Since it is fully distributed control logic it

eliminates the single-point-of-failure and adds reliability. A

program can successfully finish as long as its required services

can be executed by a dynamic collection of the available

components. By construction itself, viper enhances fault

immunity while maintaining high performance.

Future work will include development of fast and reliable

protocol for crossbar network to reduce IPC delay. Viper’s

performance could be improved by developing more efficient

and faster techniques for building virtual pipelines and

handling exceptions. Finally, by application of Viper’s flexible

execution engine to both gpp and dsp one can get more features

from the same cost.

REFERENCES

[1] Andrea Pellegrini ,Joseph L. Greathouse, Valeria Bertacco, Viper:

Virtual Pipelines for Enhanced Reliability, ISCA, Portland, OR, 2012, pp-

344-355.
[2] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway (2003).The

AMD Opteron Processor for Multiprocessor Servers. IEEETrans Micro,

23(2), pp.66-76.

[3] Brad Hallisey (Dec. 2012), Building a Virtual World: The Pipeline and

Process, IEEE Trans. Computer, vol. 45(12), pp. 90-92.

[4] Wei Wang, Axxia® Communication Processor-Networking overview,

LSI corp, Shanghai, China, Oct-2012.

